project.pca.Rd
Projects data onto principal components.
project.pca(data, pca, angular = FALSE, fit = FALSE, ...) z2xyz.pca(z.coord, pca) xyz2z.pca(xyz.coord, pca)
data | a numeric vector or row-wise matrix of data to be projected. |
---|---|
pca | an object of class |
angular | logical, if TRUE the data to be projected is treated as torsion angle data. |
fit | logical, if TRUE the data is first fitted to |
... | other parameters for |
xyz.coord | a numeric vector or row-wise matrix of data to be projected. |
z.coord | a numeric vector or row-wise matrix of PC scores (i.e. the z-scores which are centered and rotated versions of the origional data projected onto the PCs) for conversion to xyz coordinates. |
A numeric vector or matrix of projected PC scores.
Grant, B.J. et al. (2006) Bioinformatics 22, 2695--2696.
Karim ElSawy and Barry Grant
if (FALSE) { attach(transducin) gaps.pos <- gap.inspect(pdbs$xyz) #-- Do PCA without structures 2 and 7 pc.xray <- pca.xyz(pdbs$xyz[-c(2,7), gaps.pos$f.inds]) #-- Project structures 2 and 7 onto the PC space d <- project.pca(pdbs$xyz[c(2,7), gaps.pos$f.inds], pc.xray) plot(pc.xray$z[,1], pc.xray$z[,2],col="gray") points(d[,1],d[,2], col="red") detach(transducin) }