"plot"(x, resno=NULL, sse=NULL, colorkey=TRUE, at=c(-1, -0.75, -0.5, -0.25, 0.25, 0.5, 0.75, 1), main="Residue Cross Correlation", helix.col = "gray20", sheet.col = "gray80", inner.box=TRUE, outer.box=FALSE, xlab="Residue No.", ylab="Residue No.", margin.segments=NULL, segment.col=vmd_colors(), segment.min=1, ...)
x
that will be used to annotate the x- and y-axis. This is typically
a vector of residue numbers. Can be also provided with a pdb object,
in which resno of all C-alpha atoms will be used. If NULL residue
positions from 1 to the length of x
will be used. See examples below. dssp
, stride
or read.pdb
. Plot a dynamical cross-correlation matrix.
See the contourplot function from the lattice package for plot customization options, and the functions dssp
and stride
for further details.
Grant, B.J. et al. (2006) Bioinformatics 22, 2695--2696.
Be sure to check the correspondence of your sse object with the cij values being plotted as no internal checks are currently performed.
##-- Read example trajectory file trtfile <- system.file("examples/hivp.dcd", package="bio3d") trj <- read.dcd(trtfile)NATOM = 198 NFRAME= 117 ISTART= 0 last = 117 nstep = 117 nfile = 117 NSAVE = 1 NDEGF = 0 version 24 Reading (x100) |======================================================================| 100%## Read reference PDB and trim it to match the trajectory pdb <- trim(read.pdb("1W5Y"), 'calpha')Note: Accessing on-line PDB file## select residues 24 to 27 and 85 to 90 in both chains inds <- atom.select(pdb, resno=c(24:27,85:90)) ## lsq fit of trj on pdb xyz <- fit.xyz(pdb$xyz, trj, fixed.inds=inds$xyz, mobile.inds=inds$xyz) ## Dynamic cross-correlations of atomic displacements cij <- dccm(xyz) ## Default plot plot.dccm(cij) ## Change the color scheme and the range of colored data levels plot.dccm(cij, contour=FALSE, col.regions=bwr.colors(200), at=seq(-1,1,by=0.01) )## Add secondary structure annotation to plot margins plot.dccm(cij, sse=pdb)## Add additional margin annotation for chains ## Also label x- and y-axis with PDB residue numbers ch <- ifelse(pdb$atom$chain=="A", 1,2) plot.dccm(cij, resno=pdb, sse=pdb, margin.segments=ch)## Plot with cluster annotation from dynamic network analysis #net <- cna(cij) #plot.dccm(cij, margin.segments=net$raw.communities$membership) ## Focus on major communities (i.e. exclude those below a certain total length) #plot.dccm(cij, margin.segments=net$raw.communities$membership, segment.min=25)
plot.bio3d
, plot.dmat
,
filled.contour
, contour
,
image
plot.default
, dssp
,
stride