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Recap on lectures 11 and 12

In previous lectures you have been introduced to:

e (Common scoring matrices
Development and application PAM & BLOSUM matrices

e Pairwise sequence alignments
Introduction to dynamic programming
Global alignment with Needleman-Wunsch
Local alignment with Smith-Waterman

e BLAST database sequence searching
A heuristic version of Smith-Waterman
Assessing alignment Significance (Karlin-Altschul statistics, E-value, etc.)

e Multiple sequence alignments and phylogenetics
ClustalW algorithm
Evolutionary trees (UPGMA, NJ, MP, ML and Bayesian methods)




Outline of lectures 13 and 14

In the next two lectures we will cover:

e Sequence motifs and patterns
Finding functional cues from conservation patterns
Defining and using patterns and their limitations

e Sequence profiles and position specific scoring matrices (PSSMs)
Building and searching with profiles
Their advantages and limitations

e PSI-BLAST algorithm
Application of iterative PSSM searching to improve BLAST sensitivity

e Hidden Markov models (HMMs)
More versatile probabilistic model for detection of remote similarities
Defining HMMSs, searching with HMMs and generating MSAs
PFAM, SMART, GENSCAN, Developing and applying your own HMMs

e Summary and example problems




Functional cues from conservation patterns

Within a protein or nucleic acid sequence there may be a small number of
characteristic residues that occur consistently. These conserved “sequence
fingerprints” (or motifs) usually contain functionally important elements

e E.g., the amino acids that are consistently found at enzyme active sites or the
nucleotides that are associated with transcription factor binding sites.

ATP/GTP-binding proteins: G-x(4)-G-K-T

* * % %

G GKT
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Functional cues from conservation patterns...

Many DNA patterns are binding sites for

Transcription Factors.

e E.g., The Gal4 binding sequence
-N(11)-C-C-G

Gal4

CGGTCCACTGTGTG
GAL7 CGGAGCACTGTTGA
GCY1l CGGGGCAGACTATT
GAL1 CGGATTAGAAGCCG
GAL10 CGGAGGAGAGTCTT
GAL2 CGGAAAGCTTCCTT
PCL10 CGGAGTATATTGCA
CGG CCG




Representing recurrent sequence patterns

Beyond knowledge of invariant residues we can define position-based
representations that highlight the range of permissible residues per position.

e Pattern: Describes a motif using a qualitative consensus sequence
(e.g., IUPAC or regular expression). N.B. Mismatches are not tolerated!

[LFI]-x-G-[PT]-P-G-x-G-K-[TS]-[AGSI]
¢ Profile: Describes a motif using quantitative information captured in a position
specific scoring matrix (weight matrix).

Profiles quantify similarity and often span larger stretches of sequence.

e Logos: A useful visual representation of sequence motifs.

Image generated by:
weblogo.berkeley.edu




PROSITE is a protein pattern and profile database

Currently contains > 1600 patterns and profiles: http://prosite.expasy.org/
Example PROSITE patterns:

PS00087; SOD_CU_ZN_1
[GA]-[IMFAT]-H-[LIVF]-H-{S}-x-[GP]-[SDG]-x-[STAGDE]
The two Histidines are copper ligands
e Each position in pattern is separated with a hyphen

e X can match any residue

e []are used to indicate ambiguous positions in the pattern
e.g., [SDG] means the pattern can match S, D, or G at this position

e {1} are used to indicate residues that are not allowed at this position
e.g., {S} means NOT S (not Serine)

® () surround repeated residues, e.g., A(3) means AAA

Information from http://ca.expasy.org/prosite/prosuser.html




Defining sequence patterns

There are four basic steps involved in defining a new PROSITE style pattern:

1. Construct a multiple sequence alignment (MSA)

2. ldentify conserved residues

3. Create a core sequence pattern (i.e. consensus sequence)

4. Expand the pattern to improve sensitivity and specificity for detecting desired
sequences - more on this shortly...

H
3. 1-G-pg-GKta--g-

4. [LFI]-x-G-x-[PI]-[GF]-%x-G-K-[TS] <«




Pattern advantages and disadvantages

Advantages:

Relatively straightforward to identify (exact pattern matching is fast)
Patterns are intuitive to read and understand

Databases with large numbers of protein (e.g., PROSITE) and DNA sequence
(e.g., JASPER and TRANSFAC) patterns are available.

Disadvantages:

Patterns are qualitative and deterministic
(i.e., either matching or not!)

We lose information about relative frequency of each residue at a position
E.g., [GAC] vs 0.6 G, 0.28 A, and 0.12 C

Can be difficult to write complex motifs using regular expression notation

Cannot represent subtle sequence motifs




Side note: pattern sensitivity, specificity, and PPV

In practice it is not always possible to define one single regular expression type
pattern which matches all family sequences (true positives) while avoiding
matches in unrelated sequences (true negatives).

True
negatives

False
positives

O True
positives

Matching O False
pattern negatives

Sensitivity = TP/ (TP+FN)
TN/ (TN+FP) PPV = TP/ (TP+FP)

Specificity

The positive predictive value (or PPV) assesses how big a proportion of the
sequences matching the pattern are actually in the family of interest.

(i.e., the probability that a positive result is truly positive!)
ROC plot example




Outline of lectures 13 and 14

In the next two lectures we will cover:

e Sequence motifs and patterns

Finding functional cues from conservation patterns

Defining and using patterns and their limitations
:® Sequence profiles and position specific scoring matrices (PSSMs)
: Building and searching with profiles

Their advantages and limitations

e PSI-BLAST algorithm
Application of iterative PSSM searching to improve BLAST sensitivity

e Hidden Markov models (HMMs)
More versatile probabilistic model for detection of remote similarities
Defining HMMSs, searching with HMMs and generating MSAs
PFAM, SMART, GENSCAN, Developing and applying your own HMMs

e Summary and example problems




Sequence profiles

A sequence profile is a position-specific scoring matrix (or PSSM, often
pronounced '‘possum’') that gives a quantitative description of a sequence motif.

Unlike deterministic patterns, profiles assign a score to a query sequence and are
widely used for database searching.

A simple PSSM has as many columns as there are positions in the alignment, and
either 4 rows (one for each DNA nucleotide) or 20 rows (one for each amino acid).

Sequence position, k ——

S p
.
A M, =log| —
o 9 j
o 2 P;
—
Q & [ Mk . | .
z J My; score for the jth nucleotide at position k

pPxj probability of nucleotide j at position k
PSSM p; ‘“background” probability of nucleotide j

—

See Gibskov et al. (1987) PNAS 84,4355




Computing a transcription factor bind site PSSM

Alignment Counts Matrix:

Position k = 1

2 3 4 5 11 12 13
5

1 6 7 8 9 o
A: 0 0 6 10 0 1 5 0 3 10 8 10
C: 9 10 1 0 0 0 0 2 1 1 0 0 0
G: 0 0 0 0 0 0 0 1 9 5 0 0 0
T: 1 0 3 0 5 10 9 2 0 1 0 2 0
Consensus: C C [ACT] A [AT] T T N G N A [AT] A
v 1 Dy D, = ij + P; Cxj Number of jth type nucleotide at position k
.= 10 E— ki
K & D, / Z+1 Z  Total number of aligned sequences
J
p; “background” probability of nucleotide j
C,+p;/Z+1 px; probability of nucleotide j at position k
M, =log
j
P,

Adapted from Hertz and Stormo,
Bioinformatics 15:563-577




Computing a transcription factor bind site PSSM...

6

-2.4
-2.4
-2.4

Alignment Matrix: Cygj
Position k = 1 2 3 4 5
A: 0 0 6 10 5
(of 9| 10 1 0 0
G: 0 0 0 0 0
T: 1 0 3 0 5
C.+p lZ+1
k=1,j=A: M, =log| —~ b
D
C.+p./lZ+1
k=1,j=C: M, =log| —~ b
Pj
C.+p./lZ+1
k=1,3=T: M, =log| — %
P;
PSSM: Mgj
Position k = 1 2 3 4 5
A: 24| -24 08 1.3 06
C 12| 1.3 -08 -24 -2.4
G: 24| 24 -24 -24 -24
T -0.8| -24 02 -24 06

1.3

= log

O O o+~ N

=kg(

7
-0.8
-2.4
-2.4

1.2

8 9 10 11 12
5 0 3 10 8
2 1 1 0 0
1 9 5 0 0
2 0 1 0 2
0+0.25/10+1
j:—24
0.25
9+O.25/]0+1):1.2
0.25
1+0.25/10+1

8
0.6
-0.2
-0.8
-0.2

j:—OS
0.25

9 10 11 12
-2.4 0.2 1.3 1.1
-0.8 -0.8 -24 -24

1.2 0.6 -24 -24
-24 -0.8 -24 -0.2

13
10

13
1.3

-2.4
-2.4
-2.4




Scoring a test sequence

Query Sequence

ofe .\ lelell
PSSM:
Position k = 1 2 3 4
A: 2.4 -24 0.8 |1.3
C: 1.2 |13 -08 -2.4
G: 2.4 24 2.4 -2.4
T: 0.8 -2.4 [0.2| -2.4
Testseq: C C T A
Query Score = 1.2 + 1.3
+ 0.6 + 1.
= 11.9

8

0.6

5 6 7
0.6 -2.4 -0.8
-2.4  -2.4 -2.4
-2.4 -2.4 -2.4
0.6 1.3 1.2
T T T
+ 0.2 + 1.3
2 + 0.0 + 1

w +

-0.2
-0.8
-0.2

A

+ O

9 10 11
-24 02 |13
-0.8 -0.8 -2.4
1.2 (|06 | -2.4
24 -0.8 -2.4
G G A

-0.2 + 1.3

12
1.1
-2.4
-2.4

13

1.3

-0.2

T

.60 + 1.3 + 1.2

-2.4
-2.4
-2.4

A




Scoring a test sequence

Query Sequence

ofe .\ Neld)\

PSSM:

Position k = 1 2 3 4
A: -2.4  -2.4 0.8 1.3
C: 1.2 1.3 | -0.8 -2.4
G: -24 -24 -24 -24
T: -0.8 -2.4 0.2 | -24

Testseq: C C T A

Query Score =

n + =~

8

0.6

5 6 7
0.6 -2.4 -0.8
-2.4 -2.4 -2.4
-2.4 -2.4 -2.4
0.6 1.3 1.2
T T T

+ 0.2 + 1.3
2 + 0.0 + 1

w +

-0.2
-0.8
-0.2

A

+ O

9 10 11
-24 02 |13
-0.8 -0.8 -2.4
1.2 (|06 | -2.4
24 -0.8 -2.4
G G A

Q. Does the query sequence match the DNA sequence profile?

12
1.1
-2.4
-2.4

13

1.3

-0.2

T

.0 + 1.3 + 1.2
-0.2 + 1.3

-2.4
-2.4
-2.4

A




Scoring a test sequence...

Query Sequence Best Possible Sequence

PSSM:

Position k = 1 2 3 4 5 6 7 8 9 10 11 12 13
A: 24 -24 |o08]||13| 06 -24 -08 (06| -24 02 |1.3||11||13
C: 1.2||13| -08 -24 -24 -24 -24 -02 -0.8 -0.8 -24 -24 -2.4
G: 24 24 -24 24 -24 -24 -24 -08 [1.2]||0.6]| -24 -24 -24
T: -08 -24 02 -24 |0.6]||13||12| -02 -24 -08 -24 -02 -2.4

Max Score: C cC A A T T T A G G A A A

Max Score =

n + -
h o
o +
+ =
- W
o +
+ o
o o
o+
+ =
- W
w +
+ o
— o
.
+ =
- W
w +

A. Following method in Harbison et al. (2004) Nature 431:99-104

Heuristic threshold for match = 60% x Max Score = (0.6 x 13.8 = 8.28);
11.9 > 8.28; Therefore our query is a potential TFBS!




Picking a threshold for PSSM matching

Again, you want to select a threshold that minimizes FPs (e.g., how many shuffled
or random sequences does the PSSM match with that score) and minimizes FNs
(e.g., how many of the ‘real’ sequences are missed with that score).

True
negatives

False
positives

O True
positives

® False
negatives

FP=0, FN=7, TP=5
FP=1, FN=1, TP=11
FP=5, FN=0, TP=12

Q. Which threshold has the best PPV (TP/(TP+FP)) ?




Protein profile calculation by the average score method

For protein profiles calculated with the average score method the score for a
column is taken from the average of scores obtained from a substitution matrix.

Sequence position, k

T
g ~ 20 Ck
~ M, =Y ks
O oo , . ..
%g: Mkj J = 7 ij
=ige
<

My; Profile matrix element
(i.e. score for jth amino acid at the kth position)

Cxi Number of ith type amino acid at position k
Z  Total number of aligned sequences

Sij; Score between the ith and the jth amino acids
from scoring matrix (e.g.,, BLOSUM®62)

See Gibskov et al. (1987) PNAS 84,4355




Using the average score method

Position k=7

20 Ck'
_ ;j
; Mk] _27Sl]
3 i=1
: 3 3 2
5
g M7F =§SFF+gS SS
8 = 8 3 3 2
i M7W=gSFW SSWW+8SMW
F,F,F, W,W,W, M,M, 3 3 5
Crr = 3, CCT?:: 30, Cm = 2, M;,, =§SFM SSWM + 8SMM
3 3 2

BLOSUM62 Scores M7J gSFJ T 3 SWJ T g SMJ

S,rr= 6, Swr=1, Swr= 0

My = (3/8) (6) + (3/8) (1) + (2/8) (0)= 2.63

Partly based on slides from K. Dunker & Z.Weng (Boston University)




Using the average score method...

Calculating the profile values for two unobserved amino acids - Y and E,
e where Sry=3, Swy=2, Smy=-1 and Sre=-3, Swe=-3, Sme=-2:

3 3 2 3 3 2
M7Y = gSFY + gSWY + gSMY = §(3) + g(2)+ g(—l) ~1.6

3 3 2 3 3 2
My =S+ Sy ¥ =Sy = 2 (34 (-3 2(-2) ~ 2.8

From the above two equations, it is easy to predict that M7Y is much more
favorable than M7E, even though neither Y nor E has been observed at this
position (k = 7).

L|m|tat|on With many aligned sequences, average scores from a
substltutlon matrix will reduce specificity.




Using the average score method...

Calculating the profile values for two unobserved amino acids - Y and E,
e where Sry=3, Swy=2, Smy=-1 and Sre=-3, Swe=-3, Sme=-2:

3 3 2 3 3 2
M7Y = gSFY + gSWY + gSMY = §(3)+ §(2)+ g(—l) ~1.6

3 3 2 3 3 2
My =S+ Sy ¥ =Sy = 2 (34 (-3 2(-2) ~ 2.8

From the above two equations, it is easy to predict that M7Y is much more
favorable than M7E, even though neither Y nor E has been observed at this
position (k = 7).

 Limitation: With many aligned sequences, scores from a substitution
:matrix will reduce specificity.

‘E.g., if alanine is in the same position in 50 diverse sequences, then .
isubstitutions of other residues are unlikely. However, the “average score”
iis the same as for a single sequence with alanine, and so that PSSM
»position will be very tolerant of non-alanines.




Sequence weighting

An MSA is often made of a few distinct sets of related sequences, or sub-families.
It is not unusual that these sub-families are very differently populated, thus

influencing observed residue frequencies.

Sequences weighting attempt to compensate for this sequence sampling bias by

differentially weighting sequences to reduce redundancy.

SW_PDA6_MESAU
SW_PDI1_ARATH
SW_PDI_CHICK
SW_PDA6_ARATH
SW_PDA2_HUMAN
SW_THIO_ECOLI
SW_THIM_CHLRE
SW_THIO_CHLTR
SW_THI1_SYNY3
SW_THI3_CORNE
SW_THI2_CAEEL
SW_THIO_MYCGE
SW_THIO_BORBU
SW_THIO_EMENI
SW_THIO_NEUCR
SW_TRX3_YEAST
SW_THIO_OPHHA
SW_THH4_ARATH
SW_THI3_DICDI
SW_THIO_CLOLI
SW_THF2_ARATH
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Low weights




Searching for PSSM matches

If we do not allow gaps (i.e., no insertions or deletions):
e Perform a linear scan, scoring the match to the PSSM at each position in the
sequence - the “sliding window” method

AGGT

G!C

AT ¢

LCTATTAGCAATAGC....

—

See example at http://coding.plantpath.ksu.edu/profile/

If we allow gaps:

e (Can use dynamic programming to align the profile to the protein sequence(s)
(with gap penalties)
We will discuss PSI-BLAST shortly...
see Mount, Bioinformatics: sequence and genome analysis (2004)

e (Can use hidden Markov Model-based methods
We will cover HMMs in the next lecture...
see Durbin et al., Biological Sequence Analysis (1998)




Side note: Building PSSMs from unaligned sequences

Patterns and profiles are most often built on the basis of known site equivalences
(i.e. from a pre-calculated MSA).

However, a number of programs have been developed that employ local multiple
alignments to search for common sequence elements in unaligned sequences.

———

Global similarity Local non-consistent similarity

Gibbs sampling methods:
Motif Sampler - http://bayesweb.wadsworth.org/gibbs/gibbs.html
AlignAce - http://atlas.med.harvard.edu/cgi-bin/alignace.pl

Expectation maximization method:
MEME - http://meme.sdsc.edu/

See: Lawrence et al. (1993) Science. 262, 208-14




Profiles software and databases

Pftools is a package to build and search with profiles,
http://www.isrec.isb-sib.ch/ftp-server/pftools/

The package contains (among other programs):
» pfmake for building a profile starting from multiple alignments
» pfsearch to search a protein database with a profile
» pfscan to search a profile database with a protein

PRINTS database of PSSMs
http://bioinf.man.ac.uk/dbbrowser/PRINTS

Collection of conserved motifs used to characterize a protein
» Uses fingerprints (conserved motif groups).
» Very good to describe sub-families.

BLOCKS is another PSSMs database similar to prints
http://www.blocks.fhcrc.org

ProDom is collection of protein motifs obtained automatically using PSI-BLAST

http://prodes.toulouse.inra.fr/prodom/doc/prodom.html




Profiles software and databases...

InterPro is an attempt to group a number of protein domain databases.
http://www.ebi.ac.uk/interpro

It currently includes:

» Pfam
PROSITE
PRINTS
ProDom
SMART
TIGRFAMs

v v Vv v Vv

InterPro tries to have and maintain a high quality of annotation
e The database and a stand-alone package (iprscan) are available for UNIX
platforms, see:
ftp://ftp.ebi.ac.uk/pub/databases/interpro




Outline of lectures 13 and 14

In the next two lectures we will cover:

e Sequence motifs and patterns
Finding functional cues from conservation patterns
Defining and using patterns and their limitations

e Sequence profiles and position specific scoring matrices (PSSMs)
Building and searching with profiles
Their advantages and limitations
i# PSI-BLAST algorithm
+  Application of iterative PSSM searching to improve BLAST sensitivity
e Hidden Markov models (HMMs)
More versatile probabilistic model for detection of remote similarities
Defining HMMSs, searching with HMMs and generating MSAs
PFAM, SMART, GENSCAN, Developing and applying your own HMMs

e Summary and example problems




Half time break...

See PSSM example at http://coding.plantpath.ksu.edu/profile/
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PSI-BLAST: Position-Specific lterated BLAST

Many proteins in a database are too distantly related to a query to be detected
using standard BLAST. In many other cases matches are detected but are so distant
that the inference of homology is unclear. Enter the more sensitive PSI-BLAST

BLAST input sequence to
find significant alignments

\ 4
Construct a multiple
sequence alignment (MSA)

!

3. Construct a PSSM 5. ) lterate

!

BLAST PSSM profile to
search for new hits

(see Altschul et al., Nuc. Acids Res. (1997) 25:3389-3402)







Result of initial blastp
search




Result of subsequent
PSI-BLAST iteration
(note, many more
lipocalin hits
returned!)

(




Result of later
PSI-BLAST
iteration (note,
potential
“corruption”!)




PSI-BLAST returns dramatically more hits

PSI-BLAST frequently returns many more hits with significant E-values than blastp

The search process is continued iteratively, typically about five times, and at each

step a new PSSM is built.

¢ You must decide how many iterations to perform and which sequences to
include!
You can stop the search process at any point - typically whenever few new
results are returned or when no new “sensible” results are found.

reeration | Bits,vigh | Hite rysh
1 34 61
2 314 79
3 416 57
4 432 50
9] 432 50

Human retinol-binding protein 4 (RBP4; P02753) was used as a query in a PSI-
BLAST search of the RefSeq database.




(a) lteration 1

>ref|NP _001638.1| apolipoprotein D precursor [Homo sapiens]
Length=189

Score = 57.4 bits (137), Expect = 3e-07, Method: Composition-based stats.
Identities = 47/151 (31%), Positives = 78/151 (51%), Gaps = 39/151 (25%)

Query 29 VKENFDKARFSGTWYAMAKKDPEGLFLQDNIVAEFSVDETGQMSATAKGRVRLLNNWDVC 88

V+ENFD ++ G WY + +K P I A+S+ E G ++++LN  ++
Sbjct 33 VOENFDVNKYLGRWYEI-EKIPTTFENGRCIQANYSLMENG-—-—-——-——— KIKVLNQ-ELR 82
Query 89 ADMVGTFTDTE-—-—-—--—-—-- DPAKFKMKY-WGVASFLOKGNDDHWIVDTDYDTYAVQYSC 138

AD GT E +PAK ++K+ W + S +WI+ TDY+ YA+ YSC
Sbjct 83 AD--GTVNQIEGEATPVNLTEPAKLEVKFSWEFMPS—————— APYWILATDYENYALVYSC 134
Query 139 ----RLLNLDGTCADSYSFVEFSRDPNGLPPE 165

+L ++D ++++ +R+PN LPPE

Sbjct 135 TCIIQLFHVD------ FAWILARNPN-LPPE 158

(b) Iteration 2

>ref NP 001638.1| apolipoprotein D precursor [Homo sapiens]
Length=189

Score = 175 bits (443), Expect = le-42, Method: Composition-based stats.
Identities = 45/163 (27%), Positives = 77/163 (47%), Gaps = 31/163 (19%)

Query 14 GSGRAERDCRVSSFRVKENFDKARFSGTWYAMAKKDPEGLFLODNIVAEFSVDETGQOMSA 73
G+A + + V+4ENFD ++ G WY + +K P I A +S+ E G++
Sbjct 18 AEGQAFHLGKCPNPPVQENFDVNKYLGRWYEI-EKIPTTFENGRCIQANYSLMENGKIKV 76

Query 74 TAK-—-——— GRVRLLNNWDVCADMVGTFTDTEDPAKFKMKY-WGVASFLOKGNDDHWIVDT 127
+ GV + T + +PAK ++K+ W + S +WI+ T
Sbjct 77 LNQELRADGTVNQIEG-—-——-—---— EATPVNLTEPAKLEVKFSWFMPS—---—-—-- APYWILAT 123
Query 128 DYDTYAVQYSCR----LLNLDGTCADSYSFVESRDPNGLPPEA 166
DY+ YA+ YSC L ++4D ++++ +R+PN LPPE
Sbjct 124 DYENYALVYSCTCIIQLFHVD-—----- FAWILARNPN-LPPET 159

(c) lteration 3

>ref |[NP 000597.1| complement component 8, gamma polypeptide [Homo sapiens]
Length=202

Score = 104 bits (260), Expect = 2e-21, Method: Composition-based stats.
Identities = 40/186 (21%), Positives = 74/186 (39%), Gaps = 29/186 (15%)

Query 24 VSSFRVKENFDKARFSGTWYAMAKKDPEGLFLQODNIVAEFSVDETG-QMSATAKGRVRLL 82
+S+ + K NFD +F+GTW +A + AE + Q +A A R L
Sbjct 33 ISTIQPKANFDAQQFAGTWLLVAVGSACRFLOEQGHRAEATTLHVAPQGTAMAVSTFRKL 92

Query 83  NNWDVCADMVGTFTDTEDPAKFKMKYWGVASFLOKGNDDHWIVDTDYDTYAVQY-—-—-—- 136
+ 4+C +  + DT +F ++ G +G + +TDY ++AV Y
Sbjct 93  DG--ICWQVRQLYGDTGVLGRFLLQARGA----- RGAVHVVVAETDYQSFAVLYLERAGQ 145
Query 137 —SCRLLNLDGTCADSYSFVFSRDPNGLPPEAQKIVRQRQEELCLARQYRLIVHNGYCDGR 195
S +L +DS F + e+ +Y G+C+
Sbjct 146 LSVKLYARSLPVSDSVLSGFEQRVQ————EA————HLTEDQIFYFPKY —————— GFCEAA 191

Query 196 SERNLL 201
+ ++L
Sbjct 192 DQFHVL 197

blastp E-value for
this hit was 0.27




Example PSI-BLAST PSSM at iteration 3

The PSI-BLAST PSSM is essentially a query customized scoring matrix that is

more sensitive than PAM or BLOSUM (e.g. BLOSUM Saa = +4)

20 amino acids types
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PSI-BLAST errors: the corruption problem

The main source of error in PSI-BLAST searches is the spurious amplification of
sequences that are unrelated to the query.

There are three main approaches to stopping corruption of PSI-BLAST queries:
e Perform multi-domain splitting of your query sequence
If a query protein has several different domains PSI-BLAST may find database
matches related to both individually. One should not conclude that these hits
with different domains are related.
- Often best to search using just one domain of interest.

e |nspect each PSI-BLAST iteration removing suspicious hits.
E.g., your query protein may have a generic coiled-coil domain, and this may
cause other proteins sharing this motif (such as myosin) to score better than
the inclusion threshold even though they are not related.
- Use your biological knowledge!

e | ower the default expect level (e.g., E = 0.005 to E = 0.0001).
This may suppress appearance of FPs (but also TPs)




Profile advantages and disadvantages

Advantages:
¢ Quantitate with a good scoring system

e \Weights sequences according to observed diversity
Profile is specific to input sequence set

e \lery sensitive
Can detect weak similarity

e Relatively easy to compute
Automatic profile building tools available

Disadvantages:
e |f a mistake enters the profile, you may end up with irrelevant data
The corruption problem!

e |gnores higher order dependencies between positions
l.e., correlations between the residue found at a given position and those found
at other positions (e.g. salt-bridges, structural constraints on RNA etc...)

e Requires some expertise to use proficiently




Outline of lectures 13 and 14

In the next two lectures we will cover:

:® Sequence motifs and patterns

+  Finding functional cues from conservation patterns
Defining and using patterns and their limitations

0 Sequence profiles and position specific scoring matrices (PSSMs)
i Building and searching with profiles
Their advantages and limitations

ie PS|-BLAST algorithm
+  Application of iterative PSSM searching to improve BLAST sensitivity

‘e Hidden Markov models (HMMs)

:  More versatile probabilistic model for detection of remote similarities
Defining HMMSs, searching with HMMs and generating MSAs
PFAM, SMART, GENSCAN, Developing and applying your own HMMs

0 Summary and example problems




Homework questions Due 10/27/11

From homework 7

B3. We know that myoglobin is homologous to alpha globin and beta globin; all are
vertebrate members of a globin superfamily. Indeed myoglobin shares a very
similar three-dimensional structure with alpha and beta globin.

a)Using human myoglobin (P02144) as a query in a blastp search against
human RefSeq proteins, what E-value and score does “hemoglobin subunit
alpha” and “hemoglobin subunit beta” receive?

b)Perform the same search using PSI-BLAST, what scores do these proteins
receive in iteration 27

c)How many PSI-BLAST iterations do you think are sensible for a reasonable
coverage of the globin superfamily? Please explain your answer...

TIP:  Find the FASTA sequence for P02144 at http://www.uniprot.org
’ Use NCBI blastp and PSI-BLAST from http://blast.ncbi.nlm.nih.gov/
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That's it!




