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s1  VGA--NAGRPY
s2  VG---NVDKPV
s3  VGA--NVAHPH
s4  VAA------PH
s5  VGS--TYEKPS
s6  FGA--NFEKPH
s7  IGAADNGARPY
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Recap on lectures 11 and 12

In previous lectures you have been introduced to:

• Common scoring matrices
• Development and application PAM & BLOSUM matrices

• Pairwise sequence alignments
• Introduction to dynamic programming
• Global alignment  with Needleman-Wunsch
• Local alignment with Smith-Waterman  

• BLAST database sequence searching 
• A heuristic version of Smith-Waterman
• Assessing alignment Significance (Karlin-Altschul statistics, E-value, etc.)

• Multiple sequence alignments and phylogenetics
• ClustalW algorithm 
• Evolutionary trees (UPGMA, NJ, MP, ML and Bayesian methods)



Outline of lectures 13 and 14

In the next two lectures we will cover:

• Sequence motifs and patterns
• Finding functional cues from conservation patterns
• Defining and using patterns and their limitations

• Sequence profiles and position specific scoring matrices (PSSMs)
• Building and searching with profiles
• Their advantages and limitations

• PSI-BLAST algorithm
• Application of iterative PSSM searching to improve BLAST sensitivity

• Hidden Markov models (HMMs)
• More versatile probabilistic model for detection of remote similarities
• Defining HMMs, searching with HMMs and generating MSAs 
• PFAM, SMART, GENSCAN, Developing and applying your own HMMs

• Summary and example problems



Functional cues from conservation patterns

Within a protein or nucleic acid sequence there may be a small number of 
characteristic residues that occur consistently. These conserved “sequence 
fingerprints” (or motifs) usually contain functionally important elements

• E.g., the amino acids that are consistently found at enzyme active sites or the 
nucleotides that are associated with transcription factor binding sites.

RFCL_METJA/42-159     LVGPPGCGKTANYGF
RFC1_DROME/483-611    LSGPPGIGKTVKLGF
Q18841_CAEEL/343-475  LSGSPGVGKTCQLGL
RFCL_PYRHO/46-158     LAGPPGSGKTAHYNF
LON2_BACSU/93-267     VYGPPGVGKTLEASQ
Q9ZAT2_STRMU/10-118   LYGPPGIGKTAGTKF
Y2559_MYCTU/68-180    LYGPPGSGKTSQTGR
O69490_MYCLE/64-176   LHGPPGCGKTSQTGH
O48696_ARATH/140-257  FWGPPGTGKTINSKY
RARA_COXBU/47-157     LWGPPGSGKTAQAGA
RARA_HAEIN/53-165     FWGPPGTGKTAQINA
RARA_ECOLI/53-165     LWGPPGTGKTARANA
O51774_BORBU/199-337  LIGEPGVGKTAS---
CLPB_RICPR/203-342    LIGAPGVGKTAQ---
CLPB_HELPY/200-338    LLGEPGVGKTAQ---
ECCA2_MYCTU/369-505   LVGPPGTGKTGKMGP
O31345_BACCE/115-244  FTGNPGTGKTGDMGG
SP5K_BACSU/95-227     FKGNPGTGKTGKFKG
O31346_BACCE/326-458  FTGNPGTGKTAKLGG
ECCA3_MYCTU/381-514   FAGPPGTGKTAKLGE
Y055_MYCLE/330-465    FTGPPGTGKTANLGP
ECCA1_MYCTU/330-465   FTGPPGTGKTANLGP
RUVB_MYCPN/41-166     LYGPPGVGKTASMNT
RUVB_SYNY3/77-202     LYGPPGLGKTAEMQV
RUVB_THEMA/54-179     LAGPPGLGKTASLQT
RUVB_MYCLE/60-185     LSGPPGLGKTAALGS
RUVB_CHLPN/53-178     FFGPPGLGKTAYVGK
RUVB_CHLTR/53-178     FYGPPGLGKTANIGK
RUVB_PSEAE/59-184     IFGPPGLGKTAQMGV
RUVB_HELPY/56-181     FFGPPGLGKTAKMET
RUVB_RICPR/53-178     FYGPPGLGKTSNIGG
RUVB_BACSU/56-181     LYGPPGLGKTANMGV
RUVB_THETH/41-167     LFGPPGLGKTAHLGV
RUVB_TREPA/59-184     LIGPPGLGKTACLGV
RUVB_BORBU/60-185     LSGPPGLGKTAFMNA
O83350_TREPA/346-472  ISGPIGTGKSAGIGI
PEX6_SCHPO/425-554    LHGNPFTGKTASFSA
ORC1_CANAL/424-569    VCGLPGMGKTVETGF
ORC1_YEAST/475-621    VAGTPGVGKTVKLRF
ORC1_KLULA/467-613    IAGTPGVGKTVKMKF
O23326_ARATH/424-572  IHGVPGTGKTMKKGY

G----GKT

*----***

Conservation

ATP/GTP-binding proteins: G-x(4)-G-K-T



Functional cues from conservation patterns...

Many DNA patterns are binding sites for 
Transcription Factors. 
• E.g., The Gal4 binding sequence
• C-G-G-N(11)-C-C-G

TATA-box Gene
Gal4

 

GAL3  CGGTCCACTGTGTGCCG
GAL7  CGGAGCACTGTTGAGCG
GCY1  CGGGGCAGACTATTCCG
GAL1  CGGATTAGAAGCCGCCG
GAL10 CGGAGGAGAGTCTTCCG 
GAL2  CGGAAAGCTTCCTTCCG 
PCL10 CGGAGTATATTGCACCG 

      ***           ***

      CGG           CCG



Beyond knowledge of invariant residues we can define position-based 
representations that highlight the range of permissible residues per position. 

• Pattern: Describes a motif using a qualitative consensus sequence 
• (e.g., IUPAC or regular expression). N.B. Mismatches are not tolerated!

[LFI]-x-G-[PT]-P-G-x-G-K-[TS]-[AGSI]

• Profile: Describes a motif using quantitative information captured in a position 
specific scoring matrix (weight matrix). 

• Profiles quantify similarity and often span larger stretches of sequence.

• Logos: A useful visual representation of sequence motifs.

Representing recurrent sequence patterns

weblogo.berkeley.edu
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PROSITE is a protein pattern and profile database

Currently contains > 1600 patterns and profiles: http://prosite.expasy.org/
Example PROSITE patterns: 

• PS00087; SOD_CU_ZN_1
•     [GA]-[IMFAT]-H-[LIVF]-H-{S}-x-[GP]-[SDG]-x-[STAGDE]
•     The two Histidines are copper ligands

• Each position in pattern is separated with a hyphen

• x can match any residue

• [ ] are used to indicate ambiguous positions in the pattern
• e.g., [SDG] means the pattern can match S, D, or G at this position

• { } are used to indicate residues that are not allowed at this position 
• e.g., {S} means NOT S (not Serine)

• ( ) surround repeated residues, e.g., A(3) means AAA

Information from http://ca.expasy.org/prosite/prosuser.html



l-G-pg-GKta--g-

RFCL_METJA/42-159     LVGPPGCGKTANYGF
RFC1_DROME/483-611    LSGPPGIGKTVKLGF
Q18841_CAEEL/343-475  LSGSPGVGKTCQLGL
RFCL_PYRHO/46-158     LAGPPGSGKTAHYNF
LON2_BACSU/93-267     VYGPPGVGKTLEASQ
Q9ZAT2_STRMU/10-118   LYGPPGIGKTAGTKF
Y2559_MYCTU/68-180    LYGPPGSGKTSQTGR
O69490_MYCLE/64-176   LHGPPGCGKTSQTGH
O48696_ARATH/140-257  FWGPPGTGKTINSKY
RARA_COXBU/47-157     LWGPPGSGKTAQAGA
RARA_HAEIN/53-165     FWGPPGTGKTAQINA
RARA_ECOLI/53-165     LWGPPGTGKTARANA
O51774_BORBU/199-337  LIGEPGVGKTAS---
CLPB_RICPR/203-342    LIGAPGVGKTAQ---
CLPB_HELPY/200-338    LLGEPGVGKTAQ---
ECCA2_MYCTU/369-505   LVGPPGTGKTGKMGP
O31345_BACCE/115-244  FTGNPGTGKTGDMGG
SP5K_BACSU/95-227     FKGNPGTGKTGKFKG
O31346_BACCE/326-458  FTGNPGTGKTAKLGG
ECCA3_MYCTU/381-514   FAGPPGTGKTAKLGE
Y055_MYCLE/330-465    FTGPPGTGKTANLGP
ECCA1_MYCTU/330-465   FTGPPGTGKTANLGP
RUVB_MYCPN/41-166     LYGPPGVGKTASMNT
RUVB_SYNY3/77-202     LYGPPGLGKTAEMQV
RUVB_THEMA/54-179     LAGPPGLGKTASLQT
RUVB_MYCLE/60-185     LSGPPGLGKTAALGS
RUVB_CHLPN/53-178     FFGPPGLGKTAYVGK
RUVB_CHLTR/53-178     FYGPPGLGKTANIGK
RUVB_PSEAE/59-184     IFGPPGLGKTAQMGV
RUVB_HELPY/56-181     FFGPPGLGKTAKMET
RUVB_RICPR/53-178     FYGPPGLGKTSNIGG
RUVB_BACSU/56-181     LYGPPGLGKTANMGV
RUVB_THETH/41-167     LFGPPGLGKTAHLGV
RUVB_TREPA/59-184     LIGPPGLGKTACLGV
RUVB_BORBU/60-185     LSGPPGLGKTAFMNA
O83350_TREPA/346-472  ISGPIGTGKSAGIGI
PEX6_SCHPO/425-554    LHGNPFTGKTASFSA
ORC1_CANAL/424-569    VCGLPGMGKTVETGF
ORC1_YEAST/475-621    VAGTPGVGKTVKLRF
ORC1_KLULA/467-613    IAGTPGVGKTVKMKF
O23326_ARATH/424-572  IHGVPGTGKTMKKGY

*----***

.

.

.

RFCL_METJA/42-159     LVGPPGCGKTANYGF
RFC1_DROME/483-611    LSGPPGIGKTVKLGF
Q18841_CAEEL/343-475  LSGSPGVGKTCQLGL
RFCL_PYRHO/46-158     LAGPPGSGKTAHYNF
LON2_BACSU/93-267     VYGPPGVGKTLEASQ
Q9ZAT2_STRMU/10-118   LYGPPGIGKTAGTKF
Y2559_MYCTU/68-180    LYGPPGSGKTSQTGR
O69490_MYCLE/64-176   LHGPPGCGKTSQTGH
O48696_ARATH/140-257  FWGPPGTGKTINSKY
RARA_COXBU/47-157     LWGPPGSGKTAQAGA
RARA_HAEIN/53-165     FWGPPGTGKTAQINA
RARA_ECOLI/53-165     LWGPPGTGKTARANA
O51774_BORBU/199-337  LIGEPGVGKTAS---
CLPB_RICPR/203-342    LIGAPGVGKTAQ---
CLPB_HELPY/200-338    LLGEPGVGKTAQ---
ECCA2_MYCTU/369-505   LVGPPGTGKTGKMGP
O31345_BACCE/115-244  FTGNPGTGKTGDMGG
SP5K_BACSU/95-227     FKGNPGTGKTGKFKG
O31346_BACCE/326-458  FTGNPGTGKTAKLGG
ECCA3_MYCTU/381-514   FAGPPGTGKTAKLGE
Y055_MYCLE/330-465    FTGPPGTGKTANLGP
ECCA1_MYCTU/330-465   FTGPPGTGKTANLGP
RUVB_MYCPN/41-166     LYGPPGVGKTASMNT
RUVB_SYNY3/77-202     LYGPPGLGKTAEMQV
RUVB_THEMA/54-179     LAGPPGLGKTASLQT
RUVB_MYCLE/60-185     LSGPPGLGKTAALGS
RUVB_CHLPN/53-178     FFGPPGLGKTAYVGK
RUVB_CHLTR/53-178     FYGPPGLGKTANIGK
RUVB_PSEAE/59-184     IFGPPGLGKTAQMGV
RUVB_HELPY/56-181     FFGPPGLGKTAKMET
RUVB_RICPR/53-178     FYGPPGLGKTSNIGG
RUVB_BACSU/56-181     LYGPPGLGKTANMGV
RUVB_THETH/41-167     LFGPPGLGKTAHLGV
RUVB_TREPA/59-184     LIGPPGLGKTACLGV
RUVB_BORBU/60-185     LSGPPGLGKTAFMNA
O83350_TREPA/346-472  ISGPIGTGKSAGIGI
PEX6_SCHPO/425-554    LHGNPFTGKTASFSA
ORC1_CANAL/424-569    VCGLPGMGKTVETGF
ORC1_YEAST/475-621    VAGTPGVGKTVKLRF
ORC1_KLULA/467-613    IAGTPGVGKTVKMKF
O23326_ARATH/424-572  IHGVPGTGKTMKKGY

G----GK

*----***

.

.

.

Defining sequence patterns

[LFI]-x-G-x-[PI]-[GF]-x-G-K-[TS]

There are four basic steps involved in defining a new PROSITE style pattern: 
1. Construct a multiple sequence alignment (MSA)
2. Identify conserved residues 
3. Create a core sequence pattern (i.e. consensus sequence)
4. Expand the pattern to improve sensitivity and specificity for detecting desired 

sequences - more on this shortly...

1.

2. 3.

4.



Pattern advantages and disadvantages

Advantages:
• Relatively straightforward to identify (exact pattern matching is fast) 

• Patterns are intuitive to read and understand

• Databases with large numbers of protein (e.g., PROSITE) and DNA sequence 
(e.g., JASPER and TRANSFAC) patterns are available.

Disadvantages:
• Patterns are qualitative and deterministic
• (i.e., either matching or not!)     

• We lose information about relative frequency of each residue at a position 
• E.g.,  [GAC]  vs  0.6 G, 0.28 A, and 0.12 C

• Can be difficult to write complex motifs using regular expression notation

• Cannot represent subtle sequence motifs



In practice it is not always possible to define one single regular expression type 
pattern which matches all family sequences (true positives) while avoiding 
matches in unrelated sequences (true negatives).

Side note: pattern sensitivity, specificity, and PPV

True 
negatives

False
positives

True 
positives

False
negatives

Matching
pattern

The positive predictive value (or PPV) assesses how big a proportion of the 
sequences matching the pattern are actually in the family of interest.
(i.e., the probability that a positive result is truly positive!)

Sensitivity = TP/(TP+FN)

Specificity = TN/(TN+FP) PPV = TP/(TP+FP)

ROC plot example



Outline of lectures 13 and 14

In the next two lectures we will cover:

• Sequence motifs and patterns
• Finding functional cues from conservation patterns
• Defining and using patterns and their limitations

• Sequence profiles and position specific scoring matrices (PSSMs)
• Building and searching with profiles
• Their advantages and limitations

• PSI-BLAST algorithm
• Application of iterative PSSM searching to improve BLAST sensitivity

• Hidden Markov models (HMMs)
• More versatile probabilistic model for detection of remote similarities
• Defining HMMs, searching with HMMs and generating MSAs 
• PFAM, SMART, GENSCAN, Developing and applying your own HMMs

• Summary and example problems



Sequence profiles

A sequence profile is a position-specific scoring matrix (or PSSM, often 
pronounced 'possum') that gives a quantitative description of a sequence motif.

Unlike deterministic patterns, profiles assign a score to a query sequence and are 
widely used for database searching.

A simple PSSM has as many columns as there are positions in the alignment, and 
either 4 rows (one for each DNA nucleotide) or 20 rows (one for each amino acid).

 

Alternatives to regular expression type patterns are profiles and HMMs which can 
assign a score (probability) to a match to a sequence, they can be called 
probabilistic.
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Sequence position, k

Mkj

Mkj = log
pkj
pj

⎛

⎝⎜
⎞

⎠⎟

pkj   probability of nucleotide j at position k
pj    “background” probability of nucleotide jPSSM

Mkj   score for the jth nucleotide at position k

See Gibskov et al. (1987) PNAS 84, 4355



Computing a transcription factor bind site PSSM

Mkj = log
pkj
pj

⎛

⎝⎜
⎞

⎠⎟
pkj =

Ckj + pj
Z +1

Ckj   Number of jth type nucleotide at position k

Z      Total number of aligned sequences

Alignment: /Users/barry/Documents/Teaching/527_HMMs_PSSMs/tf_seqa.fa
Seaview [blocks=18 fontsize=18 LETTER] on Fri Oct 14 15:58:30 2011 

    1
s1  CCAAATTAGGAAA
s2  CCTATTAAGAAAA
s3  CCAAATTAGGAAA
s4  CCAAATTCGGATA
s5  CCCATTTCGAAAA
s5  CCTATTTAGTATA
s6  CCAAATTAGGAAA
s7  CCAAATTGGCAAA
s8  TCTATTTTGGAAA
s9  CCAATTTTCAAAA

Mkj = log
Ckj + pj / Z +1

pj

⎛

⎝⎜
⎞

⎠⎟

pj     “background” probability of nucleotide j

Simple Method for Calculating DNA Sequence Profiles

§ Recall: 

§ As the number of aligned sequences grow (for large Z):

    •  Ckj = Number of jth type nucleotide at position k

    •   Z  = Total number of aligned sequences

§ For small numbers of aligned sequences, better to use the following method 

    of calculating pkj:

     •  Where pj = background probability of that nucleotide type in the genome

          (based on GC content of genome)

    

! 

Mkj = loge

pkj

pj
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# 
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& 
' ' 

! 

pkj =
Ckj

Z

  

! 

pkj =
Ckj + pj

Z +1

Adapted from Hertz and Stormo, Bioinformatics  15:563-577

Example of calculating a DNA sequence profile (PSSM)

CCAAATTAGGAAA

CCTATTAAGAAAA

CCAAATTAGGAAA

CCAAATTCGGATA

CCCATTTCGAAAA

CCTATTTAGTATA

CCAAATTAGGAAA

CCAAATTGGCAAA

TCTATTTTGGAAA

CCAATTTTCAAAA

Alignment of Transcription factor consensus binding sequence:

Position k = 1 2 3 4 5 6 7 8 9 10 11 12 13

A: 0 0 6 10 5 0 1 5 0 3 10 8 10

C: 9 10 1 0 0 0 0 2 1 1 0 0 0

G: 0 0 0 0 0 0 0 1 9 5 0 0 0

T: 1 0 3 0 5 10 9 2 0 1 0 2 0

Alignment Matrix:

Consensus:     C        C    [ACT]    A      [AT]     T        T        N       G        N       A      [AT]     A   

Computing the DNA Sequence Profile (PSSM)

Position k = 1 2 3 4 5 6 7 8 9 10 11 12 13

A: 0 0 6 10 5 0 1 5 0 3 10 8 10

C: 9 10 1 0 0 0 0 2 1 1 0 0 0

G: 0 0 0 0 0 0 0 1 9 5 0 0 0

T: 1 0 3 0 5 10 9 2 0 1 0 2 0

Alignment Matrix:

    

! 

Mkj = loge (
pkj

pj

) = loge

(Ckj + pj ) /(Z +1)

pj
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' ' Recall:

Profile matrix values for k = 1 (assume pj = 0.25 for all nucleotides):
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) = loge (
(0 + 0.25) /(10 +1)

0.25
) = "2.4
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) = loge (
(0 + 0.25) /(10 +1)

0.25
) = "2.4

Position k = 1 2 3 4 5 6 7 8 9 10 11 12 13

A: 0 0 6 10 5 0 1 5 0 3 10 8 10

C: 9 10 1 0 0 0 0 2 1 1 0 0 0

G: 0 0 0 0 0 0 0 1 9 5 0 0 0

T: 1 0 3 0 5 10 9 2 0 1 0 2 0

Alignment Matrix:

DNA Profile Matrix (PSSM):

    

! 

Mkj = loge (
pkj

pj

) = loge

(Ckj + pj ) /(Z +1)

pj
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Position k = 1 2 3 4 5 6 7 8 9 10 11 12 13

A: -2.4 -2.4 0.8 1.3 0.6 -2.4 -0.8 0.6 -2.4 0.2 1.3 1.1 1.3

C: 1.2 1.3 -0.8 -2.4 -2.4 -2.4 -2.4 -0.2 -0.8 -0.8 -2.4 -2.4 -2.4

G: -2.4 -2.4 -2.4 -2.4 -2.4 -2.4 -2.4 -0.8 1.2 0.6 -2.4 -2.4 -2.4

T: -0.8 -2.4 0.2 -2.4 0.6 1.3 1.2 -0.2 -2.4 -0.8 -2.4 -0.2 -2.4

Computing the DNA Sequence Profile (PSSM)

Alignment Counts Matrix:

pkj    probability of nucleotide j at position k

Adapted from Hertz and Stormo, 
Bioinformatics 15:563-577



Computing a transcription factor bind site PSSM...

Mkj = log
Ckj + pj / Z +1

pj

⎛

⎝⎜
⎞
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= log 0 + 0.25 /10 +1

0.25
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= −2.4
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= log 9 + 0.25 /10 +1
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Simple Method for Calculating DNA Sequence Profiles

§ Recall: 

§ As the number of aligned sequences grow (for large Z):

    •  Ckj = Number of jth type nucleotide at position k

    •   Z  = Total number of aligned sequences

§ For small numbers of aligned sequences, better to use the following method 

    of calculating pkj:

     •  Where pj = background probability of that nucleotide type in the genome

          (based on GC content of genome)
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Adapted from Hertz and Stormo, Bioinformatics  15:563-577

Example of calculating a DNA sequence profile (PSSM)

CCAAATTAGGAAA

CCTATTAAGAAAA

CCAAATTAGGAAA

CCAAATTCGGATA

CCCATTTCGAAAA

CCTATTTAGTATA

CCAAATTAGGAAA

CCAAATTGGCAAA

TCTATTTTGGAAA

CCAATTTTCAAAA

Alignment of Transcription factor consensus binding sequence:

Position k = 1 2 3 4 5 6 7 8 9 10 11 12 13

A: 0 0 6 10 5 0 1 5 0 3 10 8 10

C: 9 10 1 0 0 0 0 2 1 1 0 0 0

G: 0 0 0 0 0 0 0 1 9 5 0 0 0

T: 1 0 3 0 5 10 9 2 0 1 0 2 0

Alignment Matrix:

Consensus:     C        C    [ACT]    A      [AT]     T        T        N       G        N       A      [AT]     A   

Computing the DNA Sequence Profile (PSSM)

Position k = 1 2 3 4 5 6 7 8 9 10 11 12 13

A: 0 0 6 10 5 0 1 5 0 3 10 8 10

C: 9 10 1 0 0 0 0 2 1 1 0 0 0

G: 0 0 0 0 0 0 0 1 9 5 0 0 0

T: 1 0 3 0 5 10 9 2 0 1 0 2 0

Alignment Matrix:
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Profile matrix values for k = 1 (assume pj = 0.25 for all nucleotides):
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Position k = 1 2 3 4 5 6 7 8 9 10 11 12 13

A: 0 0 6 10 5 0 1 5 0 3 10 8 10

C: 9 10 1 0 0 0 0 2 1 1 0 0 0

G: 0 0 0 0 0 0 0 1 9 5 0 0 0

T: 1 0 3 0 5 10 9 2 0 1 0 2 0

Alignment Matrix:

DNA Profile Matrix (PSSM):
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) = loge

(Ckj + pj ) /(Z +1)

pj

" 

# 
$ $ 

% 

& 
' ' 

Position k = 1 2 3 4 5 6 7 8 9 10 11 12 13

A: -2.4 -2.4 0.8 1.3 0.6 -2.4 -0.8 0.6 -2.4 0.2 1.3 1.1 1.3

C: 1.2 1.3 -0.8 -2.4 -2.4 -2.4 -2.4 -0.2 -0.8 -0.8 -2.4 -2.4 -2.4

G: -2.4 -2.4 -2.4 -2.4 -2.4 -2.4 -2.4 -0.8 1.2 0.6 -2.4 -2.4 -2.4

T: -0.8 -2.4 0.2 -2.4 0.6 1.3 1.2 -0.2 -2.4 -0.8 -2.4 -0.2 -2.4

Computing the DNA Sequence Profile (PSSM)

PSSM: Mkj

Simple Method for Calculating DNA Sequence Profiles

§ Recall: 

§ As the number of aligned sequences grow (for large Z):

    •  Ckj = Number of jth type nucleotide at position k

    •   Z  = Total number of aligned sequences

§ For small numbers of aligned sequences, better to use the following method 

    of calculating pkj:

     •  Where pj = background probability of that nucleotide type in the genome

          (based on GC content of genome)

    

! 

Mkj = loge

pkj

pj

" 

# 
$ $ 

% 

& 
' ' 

! 

pkj =
Ckj

Z

  

! 

pkj =
Ckj + pj

Z +1

Adapted from Hertz and Stormo, Bioinformatics  15:563-577

Example of calculating a DNA sequence profile (PSSM)

CCAAATTAGGAAA

CCTATTAAGAAAA

CCAAATTAGGAAA

CCAAATTCGGATA

CCCATTTCGAAAA

CCTATTTAGTATA

CCAAATTAGGAAA

CCAAATTGGCAAA

TCTATTTTGGAAA

CCAATTTTCAAAA

Alignment of Transcription factor consensus binding sequence:

Position k = 1 2 3 4 5 6 7 8 9 10 11 12 13

A: 0 0 6 10 5 0 1 5 0 3 10 8 10

C: 9 10 1 0 0 0 0 2 1 1 0 0 0

G: 0 0 0 0 0 0 0 1 9 5 0 0 0

T: 1 0 3 0 5 10 9 2 0 1 0 2 0

Alignment Matrix:

Consensus:     C        C    [ACT]    A      [AT]     T        T        N       G        N       A      [AT]     A   

Computing the DNA Sequence Profile (PSSM)

Position k = 1 2 3 4 5 6 7 8 9 10 11 12 13

A: 0 0 6 10 5 0 1 5 0 3 10 8 10

C: 9 10 1 0 0 0 0 2 1 1 0 0 0

G: 0 0 0 0 0 0 0 1 9 5 0 0 0

T: 1 0 3 0 5 10 9 2 0 1 0 2 0

Alignment Matrix:

    

! 

Mkj = loge (
pkj

pj

) = loge

(Ckj + pj ) /(Z +1)

pj

" 

# 
$ $ 

% 

& 
' ' Recall:

Profile matrix values for k = 1 (assume pj = 0.25 for all nucleotides):

    

! 

M
1A = loge (

(C
1A + pA) /(Z +1)

pA

) = loge (
(0 + 0.25) /(10 +1)

0.25
) = "2.4

    

! 

M
1C = loge (

(C
1C + pC ) /(Z +1)

pC

) = loge (
(9 + 0.25) /(10 +1)

0.25
) = 1.2

    

! 

M
1T = loge (

(C
1T + pT ) /(Z +1)

pT

) = loge (
(1+ 0.25) /(10 +1)

0.25
) = "0.8

    

! 

M
1G = loge (

(C
1G + pG) /(Z +1)

pG

) = loge (
(0 + 0.25) /(10 +1)

0.25
) = "2.4

Position k = 1 2 3 4 5 6 7 8 9 10 11 12 13

A: 0 0 6 10 5 0 1 5 0 3 10 8 10

C: 9 10 1 0 0 0 0 2 1 1 0 0 0

G: 0 0 0 0 0 0 0 1 9 5 0 0 0

T: 1 0 3 0 5 10 9 2 0 1 0 2 0

Alignment Matrix:

DNA Profile Matrix (PSSM):

    

! 

Mkj = loge (
pkj

pj

) = loge

(Ckj + pj ) /(Z +1)

pj

" 

# 
$ $ 

% 

& 
' ' 

Position k = 1 2 3 4 5 6 7 8 9 10 11 12 13

A: -2.4 -2.4 0.8 1.3 0.6 -2.4 -0.8 0.6 -2.4 0.2 1.3 1.1 1.3

C: 1.2 1.3 -0.8 -2.4 -2.4 -2.4 -2.4 -0.2 -0.8 -0.8 -2.4 -2.4 -2.4

G: -2.4 -2.4 -2.4 -2.4 -2.4 -2.4 -2.4 -0.8 1.2 0.6 -2.4 -2.4 -2.4

T: -0.8 -2.4 0.2 -2.4 0.6 1.3 1.2 -0.2 -2.4 -0.8 -2.4 -0.2 -2.4

Computing the DNA Sequence Profile (PSSM)

Alignment Matrix: Ckj

Mkj = log
Ckj + pj / Z +1

pj

⎛

⎝⎜
⎞

⎠⎟
= log 1+ 0.25 /10 +1

0.25
⎛
⎝⎜

⎞
⎠⎟
= −0.8

k=1,j=A:

k=1,j=C:

k=1,j=T:



Scoring a test sequenceAlignment: /Users/barry/Documents/Teaching/527_HMMs_PSSMs/tf_testseq.fa
Seaview [blocks=18 fontsize=18 LETTER] on Fri Oct 14 16:29:31 2011 

      1
test  CCTATTTAGGATA

Scoring a Test Sequence using the DNA profile (PSSM)

DNA sequence profile (PSSM) for Transcription Factor binding site:

Test Sequence (potential binding site):

CCTATTTAGGATA

Test seq:      C       C      T       A      T       T       T       A      G      G      A       T       A  

Position k = 1 2 3 4 5 6 7 8 9 10 11 12 13

A: -2.4 -2.4 0.8 1.3 0.6 -2.4 -0.8 0.6 -2.4 0.2 1.3 1.1 1.3

C: 1.2 1.3 -0.8 -2.4 -2.4 -2.4 -2.4 -0.2 -0.8 -0.8 -2.4 -2.4 -2.4

G: -2.4 -2.4 -2.4 -2.4 -2.4 -2.4 -2.4 -0.8 1.2 0.6 -2.4 -2.4 -2.4

T: -0.8 -2.4 0.2 -2.4 0.6 1.3 1.2 -0.2 -2.4 -0.8 -2.4 -0.2 -2.4

Total Score for test sequence: 

Score = 1.2 + 1.3 + 0.2 + 1.3 + 0.6 + 1.3 + 1.2 + 0.6 + 1.2 + 0.6 + 1.3 + -0.2 + 1.3

Score =  11.9

•  Does the Test Sequence match the DNA sequence profile? 

Simple Test for a Match to the DNA sequence profile

Score of Test Sequence (CCTATTTAGGATA):  11.9

Maximum possible score (CCAATTTAGGAAA):

Max Score:   C       C      A       A      T       T       T       A      G      G      A       A       A  

Total Score for Best Matching Sequence: 

Max Score = 1.2 + 1.3 + 0.8 + 1.3 + 0.6 + 1.3 + 1.2 + 0.6 + 1.2 + 0.6 + 1.3 + 1.1 + 1.3

Max Score =  13.8

Position k = 1 2 3 4 5 6 7 8 9 10 11 12 13

A: -2.4 -2.4 0.8 1.3 0.6 -2.4 -0.8 0.6 -2.4 0.2 1.3 1.1 1.3

C: 1.2 1.3 -0.8 -2.4 -2.4 -2.4 -2.4 -0.2 -0.8 -0.8 -2.4 -2.4 -2.4

G: -2.4 -2.4 -2.4 -2.4 -2.4 -2.4 -2.4 -0.8 1.2 0.6 -2.4 -2.4 -2.4

T: -0.8 -2.4 0.2 -2.4 0.6 1.3 1.2 -0.2 -2.4 -0.8 -2.4 -0.2 -2.4

Simple Test for a Match to the DNA sequence profile

Score of Test Sequence (CCTATTTAGGATA):  11.9

Maximum possible score (CCAATTTAGGAAA):  13.8

•  Example threshold: if the score of the test sequence is >60% of the Maximum 

     Score, we will designate it a match

Score Threshold for Match = 60% x Max Score = 0.6 x 13.8 = 8.28

For Match:

Score of test sequence > Score threshold 

                             11.9  >  8.28

Hence, test sequence (CCTATTTAGGATA) matches the DNA sequence profile

Test sequence is a potential binding site of Transcription Factor

Following method in Harbison et al. (2004) Nature  431:99-104

PSSM:

Query Sequence

Query Score = 1.2 + 1.3 + 0.2 + 1.3 + 0.6 + 1.3 + 1.2 
              + 0.6 + 1.2 + 0.6 + 1.3 + -0.2 + 1.3 
              = 11.9



Scoring a test sequenceAlignment: /Users/barry/Documents/Teaching/527_HMMs_PSSMs/tf_testseq.fa
Seaview [blocks=18 fontsize=18 LETTER] on Fri Oct 14 16:29:31 2011 

      1
test  CCTATTTAGGATA

Scoring a Test Sequence using the DNA profile (PSSM)

DNA sequence profile (PSSM) for Transcription Factor binding site:

Test Sequence (potential binding site):

CCTATTTAGGATA

Test seq:      C       C      T       A      T       T       T       A      G      G      A       T       A  

Position k = 1 2 3 4 5 6 7 8 9 10 11 12 13

A: -2.4 -2.4 0.8 1.3 0.6 -2.4 -0.8 0.6 -2.4 0.2 1.3 1.1 1.3

C: 1.2 1.3 -0.8 -2.4 -2.4 -2.4 -2.4 -0.2 -0.8 -0.8 -2.4 -2.4 -2.4

G: -2.4 -2.4 -2.4 -2.4 -2.4 -2.4 -2.4 -0.8 1.2 0.6 -2.4 -2.4 -2.4

T: -0.8 -2.4 0.2 -2.4 0.6 1.3 1.2 -0.2 -2.4 -0.8 -2.4 -0.2 -2.4

Total Score for test sequence: 

Score = 1.2 + 1.3 + 0.2 + 1.3 + 0.6 + 1.3 + 1.2 + 0.6 + 1.2 + 0.6 + 1.3 + -0.2 + 1.3

Score =  11.9

•  Does the Test Sequence match the DNA sequence profile? 

Simple Test for a Match to the DNA sequence profile

Score of Test Sequence (CCTATTTAGGATA):  11.9

Maximum possible score (CCAATTTAGGAAA):

Max Score:   C       C      A       A      T       T       T       A      G      G      A       A       A  

Total Score for Best Matching Sequence: 

Max Score = 1.2 + 1.3 + 0.8 + 1.3 + 0.6 + 1.3 + 1.2 + 0.6 + 1.2 + 0.6 + 1.3 + 1.1 + 1.3

Max Score =  13.8

Position k = 1 2 3 4 5 6 7 8 9 10 11 12 13

A: -2.4 -2.4 0.8 1.3 0.6 -2.4 -0.8 0.6 -2.4 0.2 1.3 1.1 1.3

C: 1.2 1.3 -0.8 -2.4 -2.4 -2.4 -2.4 -0.2 -0.8 -0.8 -2.4 -2.4 -2.4

G: -2.4 -2.4 -2.4 -2.4 -2.4 -2.4 -2.4 -0.8 1.2 0.6 -2.4 -2.4 -2.4

T: -0.8 -2.4 0.2 -2.4 0.6 1.3 1.2 -0.2 -2.4 -0.8 -2.4 -0.2 -2.4

Simple Test for a Match to the DNA sequence profile

Score of Test Sequence (CCTATTTAGGATA):  11.9

Maximum possible score (CCAATTTAGGAAA):  13.8

•  Example threshold: if the score of the test sequence is >60% of the Maximum 

     Score, we will designate it a match

Score Threshold for Match = 60% x Max Score = 0.6 x 13.8 = 8.28

For Match:

Score of test sequence > Score threshold 

                             11.9  >  8.28

Hence, test sequence (CCTATTTAGGATA) matches the DNA sequence profile

Test sequence is a potential binding site of Transcription Factor

Following method in Harbison et al. (2004) Nature  431:99-104

PSSM:

Query Sequence

Query Score = 1.2 + 1.3 + 0.2 + 1.3 + 0.6 + 1.3 + 1.2 
              + 0.6 + 1.2 + 0.6 + 1.3 + -0.2 + 1.3 
              = 11.9

Q. Does the query sequence match the DNA sequence profile?



Scoring a Test Sequence using the DNA profile (PSSM)

DNA sequence profile (PSSM) for Transcription Factor binding site:

Test Sequence (potential binding site):

CCTATTTAGGATA

Test seq:      C       C      T       A      T       T       T       A      G      G      A       T       A  

Position k = 1 2 3 4 5 6 7 8 9 10 11 12 13

A: -2.4 -2.4 0.8 1.3 0.6 -2.4 -0.8 0.6 -2.4 0.2 1.3 1.1 1.3

C: 1.2 1.3 -0.8 -2.4 -2.4 -2.4 -2.4 -0.2 -0.8 -0.8 -2.4 -2.4 -2.4

G: -2.4 -2.4 -2.4 -2.4 -2.4 -2.4 -2.4 -0.8 1.2 0.6 -2.4 -2.4 -2.4

T: -0.8 -2.4 0.2 -2.4 0.6 1.3 1.2 -0.2 -2.4 -0.8 -2.4 -0.2 -2.4

Total Score for test sequence: 

Score = 1.2 + 1.3 + 0.2 + 1.3 + 0.6 + 1.3 + 1.2 + 0.6 + 1.2 + 0.6 + 1.3 + -0.2 + 1.3

Score =  11.9

•  Does the Test Sequence match the DNA sequence profile? 

Simple Test for a Match to the DNA sequence profile

Score of Test Sequence (CCTATTTAGGATA):  11.9

Maximum possible score (CCAATTTAGGAAA):

Max Score:   C       C      A       A      T       T       T       A      G      G      A       A       A  

Total Score for Best Matching Sequence: 

Max Score = 1.2 + 1.3 + 0.8 + 1.3 + 0.6 + 1.3 + 1.2 + 0.6 + 1.2 + 0.6 + 1.3 + 1.1 + 1.3

Max Score =  13.8

Position k = 1 2 3 4 5 6 7 8 9 10 11 12 13

A: -2.4 -2.4 0.8 1.3 0.6 -2.4 -0.8 0.6 -2.4 0.2 1.3 1.1 1.3

C: 1.2 1.3 -0.8 -2.4 -2.4 -2.4 -2.4 -0.2 -0.8 -0.8 -2.4 -2.4 -2.4

G: -2.4 -2.4 -2.4 -2.4 -2.4 -2.4 -2.4 -0.8 1.2 0.6 -2.4 -2.4 -2.4

T: -0.8 -2.4 0.2 -2.4 0.6 1.3 1.2 -0.2 -2.4 -0.8 -2.4 -0.2 -2.4

Simple Test for a Match to the DNA sequence profile

Score of Test Sequence (CCTATTTAGGATA):  11.9

Maximum possible score (CCAATTTAGGAAA):  13.8

•  Example threshold: if the score of the test sequence is >60% of the Maximum 

     Score, we will designate it a match

Score Threshold for Match = 60% x Max Score = 0.6 x 13.8 = 8.28

For Match:

Score of test sequence > Score threshold 

                             11.9  >  8.28

Hence, test sequence (CCTATTTAGGATA) matches the DNA sequence profile

Test sequence is a potential binding site of Transcription Factor

Following method in Harbison et al. (2004) Nature  431:99-104

Scoring a test sequence...Alignment: /Users/barry/Documents/Teaching/527_HMMs_PSSMs/tf_testseq.fa
Seaview [blocks=18 fontsize=18 LETTER] on Fri Oct 14 16:29:31 2011 

      1
test  CCTATTTAGGATA

Max Score = 1.2 + 1.3 + 0.8 + 1.3 + 0.6 + 1.3 + 1.2
            + 0.6 + 1.2 + 0.6 + 1.3 + 1.1 + 1.3 
            = 13.8

PSSM:

Query Sequence

Alignment: /Users/barry/Documents/Teaching/527_HMMs_PSSMs/testseq_best.fa
Seaview [blocks=18 fontsize=18 LETTER] on Fri Oct 14 16:38:31 2011 

      1
best  CCAATTTAGGAAA

Best Possible Sequence

Heuristic threshold for match = 60% x Max Score = (0.6 x 13.8 = 8.28); 
      11.9 > 8.28; Therefore our query is a potential TFBS!

A. Following method in Harbison et al. (2004) Nature 431:99-104



Picking a threshold for PSSM matching

Again, you want to select a threshold that minimizes FPs (e.g., how many shuffled 
or random sequences does the PSSM match with that score) and minimizes FNs 
(e.g., how many of the ‘real’ sequences are missed with that score).

True 
negatives

False
positives

True 
positives

False
negatives

FP=0, FN=7, TP=5  
FP=1, FN=1, TP=11
FP=5, FN=0, TP=12

Q. Which threshold has the best PPV (TP/(TP+FP)) ?



Protein profile calculation by the average score method

Mkj =
Cki

Zi=1

20

∑ Sij

Cki   Number of ith type amino acid at position k

Z      Total number of aligned sequences

Sij    Score between the ith and the jth amino acids
         from scoring matrix (e.g., BLOSUM62)

Mkj   Profile matrix element 
        (i.e. score for jth amino acid at the kth position)

A
m
i
n
o
 
a
c
i
d

t
y
p
e
,
 
j

Sequence position, k

Mkj

See Gibskov et al. (1987) PNAS 84, 4355

For protein profiles calculated with the average score method the score for a 
column is taken from the average of scores obtained from a substitution matrix.



Using the average score method
Alignment: /Users/barry/Documents/Teaching/527_HMMs_PSSMs/pssm_seqs1.fa
Seaview [blocks=18 fontsize=18 LETTER] on Sat Oct 15 11:44:03 2011 

   1
1  AGGCTHFWKGESM
2  SGACSRWYRGQSL
3  TGSCLKFFHG-LM
4  SGACSRMYRGESL
5  TGGCSKWMRGQSV
6  SGNCSKMWKGNSI
7  FGACSHWYKGDSL
8  SGQCSRFYRGQSL

Position k=7

F,F,F,  W,W,W,  M,M,

BLOSUM62 Scores
SFF = 6, SWF = 1, SMF = 0

Mkj =
Ckj

Zi=1

20

∑ Sij

C7F = 3, C7W = 3, C7M = 2, 
C7? = 0

Z = 8

M7F = (3/8)(6) + (3/8)(1) + (2/8)(0)= 2.63

Lecture 9: Protein Sequence Profiles and Motif Applications

•  Calculating profiles of protein sequences

- Average Score Method

•  Pattern and Profile applications

•  PSI-BLAST

•  Identifying new sequence motifs:

- Gibbs sampling

                Some slides adapted from slides by Dr. Keith Dunker

Some slides adapted from slides created by Dr. Zhiping Weng (Boston University)

Protein Sequence Profiles

§ A profile is a position-specific scoring matrix that gives a quantitative 

    description of a sequence motif

§ For protein sequences, the profile scoring matrix has N rows and 20+ 

    columns, N being the length of the profile (# of sequence positions)

§ The first 20 columns indicate the score (or probability) for finding, at

    that position in the target sequence, one of the 20 amino acids

§ Additional columns contain gap penalties for insertions/deletions at

    that position in the target sequence

§ Mkj = score for the jth amino acid (or gap) at the kth position in the sequence

Calculating the Profile Matrix for Protein Sequences:

 Average Score Method

! 

Mkj =
Cki

Z
Sij

i=1

20

"

•  Mkj = Profile matrix element (score for jth amino acid at the kth position)

•  Cki = Number of ith type amino acid at position k in the sequence/profile

•   Z  = Number of aligned sequences

•  Sij = Score between the ith and the jth amino acids based on a scoring 

             matrix (e.g., PAM250 or BLOSUM62)

Derived from paper by Gribskov et al, (1987) PNAS  84:4355-8

1   AGGCTHFWKGESM

2   SGACSRWYRGQSL

3   TGSCLKFFHG-LM

4   SGACSRMYRGESL

5   TGGCSKWMRGQSV

6   SGNCSKMWKGNSI

7   FGACSHWYKGDSL

Z=8  SGQCSRFYRGQSL

Average Score Method: Example

Position k = 7

! 

Mkj =
Cki

Z
Sij

i=1

20

"

C
7F

 = 3, C
7W

 = 3, C
7M

 = 2, other C
7i 

= 0

! 

M
7F =

3

8
SFF +

3

8
SWF +

2

8
SMF

M
7W =

3

8
SFW +

3

8
SWW +

2

8
SMW

M
7M =

3

8
SFM +

3

8
SWM +

2

8
SMM

M
7 j =

3

8
SFj +

3

8
SWj +

2

8
SMj

Using BLOSUM62:

SFF = 6; SWF = 1; SMF = 0

M7F = (3/8)(6) + (3/8)(1) + (2/8)(0) = 2.625 

Partly based on slides from K. Dunker & Z. Weng (Boston University)



Using the average score method...

Calculating the profile values for two unobserved amino acids - Y and E, 
• where SFY=3, SWY=2, SMY=-1 and SFE=-3, SWE=-3, SME=-2:

From the above two equations, it is easy to predict that M7Y is much more 
favorable than M7E, even though neither Y nor E has been observed at this 
position (k = 7).

Average Score Method: Example

! 

M7Y =
3

8
S
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+
3

8
S
WY

+
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8
S
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=
3

8
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3
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8
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S
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=
3

8
("3) +

3

8
("3) +

2

8
("2) ~ "2.8

§ Calculating the profile values for two unobserved amino acids (Y and E):

§ From the above two equations, it is easy to predict that M7Y is much more

    favorable than M7E, even though neither Y nor E has been observed at

    this position (k = 7). Why?

Searching for PSSM/Profile Matches

§ If we do not allow gaps (i.e., no insertions or deletions):

      •  Can simply do a linear scan, scoring the match to the position-specific

          scoring matrix (PSSM) at each position in the sequence

§ If we allow gaps:

      •  Can use dynamic programming to align the profile to the protein 

          sequence(s) (with gap penalties)

- see Mount, Bioinformatics: sequence and genome analysis (2004)

      •  Can use hidden Markov Model-based methods 

              - see Durbin et al., Biological Sequence Analysis (1998)

Sequence Pattern and Profile Applications

§ Predicting structural or functional domains in protein sequences

    •  Example: PROSITE database of protein sequence motifs

§ Predicting protein-protein interaction motifs

§ Predicting transcription factor binding sites in DNA sequence

    •  Example: TRANSFAC database of DNA sequence motifs

§ Predicting protein localization 

    •  Example: PSORT method to predict protein localization

Protein motif example: PROSITE

§ PROSITE is a database of sequence motifs (patterns and profiles)

§ These sequence motifs can be used to predict protein structural domains

§ Example — Gal4 and Gcn4 transcription factors:

Gal4

Zn-finger DNA-binding protein domain matched by pattern:

[GASTPV] - C - x(2) - C - [RKHSTACW] - x(2) - [RKHQ] - x(2) - C - x(5,12) - C - x(2) - C - x(6,8) - C

Gcn4 

B-ZIP DNA-binding protein domain matched by profile

Gal4:

Zn-finger domain

Gcn4:

B-ZIP domain

Limitation: With many aligned sequences, average scores from a 
substitution matrix will reduce specificity.

Q. Why?



Using the average score method...

Calculating the profile values for two unobserved amino acids - Y and E, 
• where SFY=3, SWY=2, SMY=-1 and SFE=-3, SWE=-3, SME=-2:

From the above two equations, it is easy to predict that M7Y is much more 
favorable than M7E, even though neither Y nor E has been observed at this 
position (k = 7).

Average Score Method: Example

! 

M7Y =
3

8
S
FY

+
3

8
S
WY

+
2

8
S
MY

=
3

8
(3) +

3

8
(2) +

2

8
("1) ~ 1.6

M7E =
3

8
S
FE

+
3

8
S
WE

+
2

8
S
ME

=
3

8
("3) +

3

8
("3) +

2

8
("2) ~ "2.8

§ Calculating the profile values for two unobserved amino acids (Y and E):

§ From the above two equations, it is easy to predict that M7Y is much more

    favorable than M7E, even though neither Y nor E has been observed at

    this position (k = 7). Why?

Searching for PSSM/Profile Matches

§ If we do not allow gaps (i.e., no insertions or deletions):

      •  Can simply do a linear scan, scoring the match to the position-specific

          scoring matrix (PSSM) at each position in the sequence

§ If we allow gaps:

      •  Can use dynamic programming to align the profile to the protein 

          sequence(s) (with gap penalties)

- see Mount, Bioinformatics: sequence and genome analysis (2004)

      •  Can use hidden Markov Model-based methods 

              - see Durbin et al., Biological Sequence Analysis (1998)

Sequence Pattern and Profile Applications

§ Predicting structural or functional domains in protein sequences

    •  Example: PROSITE database of protein sequence motifs

§ Predicting protein-protein interaction motifs

§ Predicting transcription factor binding sites in DNA sequence

    •  Example: TRANSFAC database of DNA sequence motifs

§ Predicting protein localization 

    •  Example: PSORT method to predict protein localization

Protein motif example: PROSITE

§ PROSITE is a database of sequence motifs (patterns and profiles)

§ These sequence motifs can be used to predict protein structural domains

§ Example — Gal4 and Gcn4 transcription factors:

Gal4

Zn-finger DNA-binding protein domain matched by pattern:

[GASTPV] - C - x(2) - C - [RKHSTACW] - x(2) - [RKHQ] - x(2) - C - x(5,12) - C - x(2) - C - x(6,8) - C

Gcn4 

B-ZIP DNA-binding protein domain matched by profile

Gal4:

Zn-finger domain

Gcn4:

B-ZIP domain

Limitation: With many aligned sequences, scores from a substitution 
matrix will reduce specificity. 
E.g., if alanine is in the same position in 50 diverse sequences, then 
substitutions of other residues are unlikely. However, the “average score” 
is the same as for a single sequence with alanine, and so that PSSM 
position will be very tolerant of non-alanines.



Sequence weighting

An MSA is often made of a few distinct sets of related sequences, or sub-families. 
It is not unusual that these sub-families are very differently populated, thus 
influencing observed residue frequencies.

Sequences weighting attempt to compensate for this sequence sampling bias by 
differentially weighting sequences to reduce redundancy.

Patterns, Profiles, HMMs, PSI-BLAST Course 2003

Sequence weighting

• An MSA is often made of a few distinct sets of related sequences, or sub-
families. It is not unusual that these sub-families are very di↵erently populated,
thus influencing observed residue frequencies.

• Sequences weighting algorithms attempt to compensate this sequence
sampling bias.
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Searching for PSSM matches

If we do not allow gaps (i.e., no insertions or deletions):
• Perform a linear scan, scoring the match to the PSSM at each position in the 

sequence - the “sliding window” method

GCAGGTATCCTATTAGCAATAGC....

• See example at http://coding.plantpath.ksu.edu/profile/ 

If we allow gaps:
• Can use dynamic programming to align the profile to the protein sequence(s) 

(with gap penalties)
• We will discuss PSI-BLAST shortly...
• see Mount, Bioinformatics: sequence and genome analysis (2004)

• Can use hidden Markov Model-based methods
• We will cover HMMs in the next lecture...
• see Durbin et al., Biological Sequence Analysis (1998)



Side note: Building PSSMs from unaligned sequences 

Patterns and profiles are most often built on the basis of known site equivalences 
(i.e. from a pre-calculated MSA).

However, a number of programs have been developed that employ local multiple 
alignments to search for common sequence elements in unaligned sequences.

Gibbs sampling methods:
Motif Sampler  - http://bayesweb.wadsworth.org/gibbs/gibbs.html
AlignAce - http://atlas.med.harvard.edu/cgi-bin/alignace.pl

Expectation maximization method:
MEME - http://meme.sdsc.edu/

Global similarity Local non-consistent similarity 

See: Lawrence et al. (1993) Science. 262, 208-14



Profiles software and databases

Pftools is a package to build and search with profiles, 
http://www.isrec.isb-sib.ch/ftp-server/pftools/

The package contains (among other programs):
‣ pfmake for building a profile starting from multiple alignments
‣ pfsearch to search a protein database with a profile
‣ pfscan to search a profile database with a protein

PRINTS database of PSSMs
http://bioinf.man.ac.uk/dbbrowser/PRINTS

Collection of conserved motifs used to characterize a protein 
‣ Uses fingerprints (conserved motif groups). 
‣ Very good to describe sub-families. 

BLOCKS is another PSSMs database similar to prints 
http://www.blocks.fhcrc.org

ProDom is collection of protein motifs obtained automatically using PSI-BLAST
http://prodes.toulouse.inra.fr/prodom/doc/prodom.html



Profiles software and databases...

InterPro is an attempt to group a number of protein domain databases. 
http://www.ebi.ac.uk/interpro

It currently includes:
‣ Pfam
‣ PROSITE  
‣ PRINTS
‣ ProDom
‣ SMART
‣ TIGRFAMs

• InterPro tries to have and maintain a high quality of annotation
• The database and a stand-alone package (iprscan) are available for UNIX 

platforms, see:
•     ftp://ftp.ebi.ac.uk/pub/databases/interpro



Outline of lectures 13 and 14

In the next two lectures we will cover:

• Sequence motifs and patterns
• Finding functional cues from conservation patterns
• Defining and using patterns and their limitations

• Sequence profiles and position specific scoring matrices (PSSMs)
• Building and searching with profiles
• Their advantages and limitations

• PSI-BLAST algorithm
• Application of iterative PSSM searching to improve BLAST sensitivity

• Hidden Markov models (HMMs)
• More versatile probabilistic model for detection of remote similarities
• Defining HMMs, searching with HMMs and generating MSAs 
• PFAM, SMART, GENSCAN, Developing and applying your own HMMs

• Summary and example problems



Half time break...

• See PSSM example at http://coding.plantpath.ksu.edu/profile/ 
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PSI-BLAST:  Position-Specific Iterated BLAST

Many proteins in a database are too distantly related to a query to be detected 
using standard BLAST. In many other cases matches are detected but are so distant 
that the inference of homology is unclear.  Enter the more sensitive PSI-BLAST

• (see Altschul et al., Nuc. Acids Res. (1997) 25:3389-3402)

BLAST input sequence to 
find significant alignments

Construct a multiple 
sequence alignment (MSA)

Construct a PSSM

BLAST PSSM profile to 
search for new hits

Iterate

1.

2.

3.

4.

5.



Retinol-binding protein

Odorant binding protein

Apolipoprotein D

Start search with single 
human RBD sequence



Retinol-binding protein

Odorant binding protein

Apolipoprotein D

Result of initial blastp 
search 



Retinol-binding protein

Odorant binding protein

Apolipoprotein D

Result of subsequent 
PSI-BLAST iteration 
(note, many more 
lipocalin hits 
returned!) 



Retinol-binding protein

Odorant binding protein

Apolipoprotein D

Potential Lipocalins?

Result of later 
PSI-BLAST 
iteration (note, 
potential 
“corruption”!) 



PSI-BLAST returns dramatically more hits 

PSI-BLAST frequently returns many more hits with significant E-values than blastp

The search process is continued iteratively, typically about five times, and at each 
step a new PSSM is built. 
• You must decide how many iterations to perform and which sequences to 

include! 
• You can stop the search process at any point - typically whenever few new 

results are returned or when no new “sensible” results are found.

Iteration Hits with 
E < 0.005

Hits with 
E > 0.005

1 34 61
2 314 79
3 416 57
4 432 50
5 432 50

Human retinol-binding protein 4 (RBP4; P02753) was used as a query in a PSI-
BLAST search of the RefSeq database.



The number of iterations that a PSI-BLAST search performs relates to the

number of hits (sequences) in the database that running the program reports.

After each PSI-BLAST iteration, the results that are returned describe which

sequences match the input PSSM.

Assessing Performance of PSI-BLAST
There are several ways to assess the performance of PSI-BLAST. When a query is

searched against a large database such as SwissProt, the PSSMs can be searched

against versions of the database that either are shuffled or have the order of each

sequence reversed. When this is done, the PSI-BLASTexpect values are not signifi-

cant (Altschul et al., 1997).

In another approach, several groups have compared the relationships detected

using PSI-BLAST to those detected by the rigorous structural analysis of

homologous proteins that share limited amino acid identity. Park and colleagues

(1998) used the structural classification of proteins (SCOP) database. They found

FIGURE 5.6. PSI-BLAST search
detects distantly related proteins
using progressive iterations with a
PSSM. (a) A search with RBP4
as a query (NP_006735) detects
the lipocalin apolipoprotein D
(NP_001638) in the first iteration.
(b) As the search progresses to the
second iteration, the length of the
alignment increases, the bit score
becomes higher, the expect value
decreases, and the number of gaps
in the alignment decreases. (c) By
the third iteration, the match to
human complement component 8
gamma achieves a significant E
value (2e-21), while previously
(Fig. 4.19) in a standard blastp
search it had been 0.27.

>ref|NP_001638.1| apolipoprotein D precursor [Homo sapiens]
Length=189
 Score = 57.4 bits (137),  Expect = 3e-07, Method: Composition-based stats.
 Identities = 47/151 (31%), Positives = 78/151 (51%), Gaps = 39/151 (25%)
Query  29   VKENFDKARFSGTWYAMAKKDPEGLFLQDNIVAEFSVDETGQMSATAKGRVRLLNNWDVC  88
            V+ENFD  ++ G WY + +K P        I A +S+ E G        ++++LN  ++ 
Sbjct  33   VQENFDVNKYLGRWYEI-EKIPTTFENGRCIQANYSLMENG--------KIKVLNQ-ELR  82
Query  89   ADMVGTFTDTE---------DPAKFKMKY-WGVASFLQKGNDDHWIVDTDYDTYAVQYSC  138
            AD  GT    E         +PAK ++K+ W + S        +WI+ TDY+ YA+ YSC
Sbjct  83   AD--GTVNQIEGEATPVNLTEPAKLEVKFSWFMPS------APYWILATDYENYALVYSC  134
Query  139  ----RLLNLDGTCADSYSFVFSRDPNGLPPE  165
                +L ++D      ++++ +R+PN LPPE
Sbjct  135  TCIIQLFHVD------FAWILARNPN-LPPE  158

(a) Iteration 1

(b) Iteration 2
>ref|NP_001638.1| apolipoprotein D precursor [Homo sapiens]
Length=189
 Score =  175 bits (443),  Expect = 1e-42, Method: Composition-based stats.
 Identities = 45/163 (27%), Positives = 77/163 (47%), Gaps = 31/163 (19%)
Query  14   GSGRAERDCRVSSFRVKENFDKARFSGTWYAMAKKDPEGLFLQDNIVAEFSVDETGQMSA  73
              G+A    +  +  V+ENFD  ++ G WY + +K P        I A +S+ E G++  
Sbjct  18   AEGQAFHLGKCPNPPVQENFDVNKYLGRWYEI-EKIPTTFENGRCIQANYSLMENGKIKV  76
Query  74   TAK-----GRVRLLNNWDVCADMVGTFTDTEDPAKFKMKY-WGVASFLQKGNDDHWIVDT  127
              +     G V  +           T  +  +PAK ++K+ W + S        +WI+ T
Sbjct  77   LNQELRADGTVNQIEG-------EATPVNLTEPAKLEVKFSWFMPS------APYWILAT  123
Query  128  DYDTYAVQYSCR----LLNLDGTCADSYSFVFSRDPNGLPPEA  166
            DY+ YA+ YSC     L ++D      ++++ +R+PN LPPE 
Sbjct  124  DYENYALVYSCTCIIQLFHVD------FAWILARNPN-LPPET  159

(c) Iteration 3
>ref|NP_000597.1| complement component 8, gamma polypeptide [Homo sapiens]
Length=202
 Score =  104 bits (260),  Expect = 2e-21, Method: Composition-based stats.
 Identities = 40/186 (21%), Positives = 74/186 (39%), Gaps = 29/186 (15%)
Query  24   VSSFRVKENFDKARFSGTWYAMAKKDPEGLFLQDNIVAEFSVDETG-QMSATAKGRVRLL  82
            +S+ + K NFD  +F+GTW  +A         +    AE +      Q +A A    R L
Sbjct  33   ISTIQPKANFDAQQFAGTWLLVAVGSACRFLQEQGHRAEATTLHVAPQGTAMAVSTFRKL  92
Query  83   NNWDVCADMVGTFTDTEDPAKFKMKYWGVASFLQKGNDDHWIVDTDYDTYAVQY------  136
            +   +C  +   + DT    +F ++  G      +G     + +TDY ++AV Y      
Sbjct  93   DG--ICWQVRQLYGDTGVLGRFLLQARGA-----RGAVHVVVAETDYQSFAVLYLERAGQ  145
Query  137  -SCRLLNLDGTCADSYSFVFSRDPNGLPPEAQKIVRQRQEELCLARQYRLIVHNGYCDGR  195
             S +L       +DS    F +       EA       ++++    +Y      G+C+  
Sbjct  146  LSVKLYARSLPVSDSVLSGFEQRVQ----EA----HLTEDQIFYFPKY------GFCEAA  191
Query  196  SERNLL  201
             + ++L
Sbjct  192  DQFHVL  197

In a related approach, Schaffer
et al. (2001) plotted the number of
PSI-BLAST false positives versus
true positives to generate a sensi-
tivity curve. They used this plot to
assess the accuracy of PSI-BLAST
using a variety of adjustments to
the parameters.
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blastp E-value for 
this hit was 0.27



Example PSI-BLAST PSSM at iteration 3

The PSI-BLAST PSSM is essentially a query customized scoring matrix that is 
more sensitive than PAM or BLOSUM (e.g. BLOSUM SAA = +4) 

What did this search achieve? After a series of position-specific iterations,

hundreds of additional database matches were identified. Many distantly related

proteins are now shown in the alignment. We can understand how the sensitivity

of the search increased by examining the pairwise alignment of the query

(RBP4) with a match, human apolipoprotein D (Fig. 5.6). In the first

PSI-BLAST iteration, the bit score was 57.4, the expect value was 3e-07 (i.e.,

3 ! 1027), and there were 47 identities and 39 gaps across an alignment of 151

residues (Fig. 5.6a). After the second iteration, the score rose to 175 bits, the

E value dropped (to 10242), the length of the alignment increased (to 163

residues), and the number of gaps decreased. In the second iteration, larger por-

tions of the amino- and carboxy-terminials of the two proteins were included in

the alignment. We previously discussed a questionable match between retinol

binding protein 4 (RBP4) and complement component 8 g (Fig. 4.19). The E

value was 0.27 and the score was 33.9 bits. Here in the third PSI-BLAST iteration

the E value for this pairwise alignment is 2!10221 (Fig. 5.6c). The E value was

dramatically lower as a result of using a scoring matrix specially constructed for

this family of proteins.

We can visualize the PSI-BLAST process by imagining each lipocalin in the data-

base as a point in space (Fig. 5.7). An initial search with RBP4 detects other RBP

homologs as well as several apolipoprotein D proteins. The PSSM of PSI-BLAST

allows the detection of other lipocalins related to apolipoprotein D. Odorant-binding

proteins are not detected by a blastp search using RBP4 as a query, but they are found

by PSI-BLAST.

As another example of the usefulness of PSI-BLAST, consider a search using

RBP4 as a query, with the output restricted to bacteria. Currently (January 2009),

there is no match better than threshold after the first iteration. By the second iteration

there are two matches better than threshold, and by the third iteration there are over

300 sequences.

           A  R  N  D  C  Q  E  G  H  I  L  K  M  F  P  S  T  W  Y  V 
    1 M   -1 -2 -2 -3 -2 -1 -2 -3 -2  1  2 -2  6  0 -3 -2 -1 -2 -1  1 
    2 K   -1  1  0  1 -4  2  4 -2  0 -3 -3  3 -2 -4 -1  0 -1 -3 -2 -3 
    3 W   -3 -3 -4 -5 -3 -2 -3 -3 -3 -3 -2 -3 -2  1 -4 -3 -3 12  2 -3 
    4 V    0 -3 -3 -4 -1 -3 -3 -4 -4  3  1 -3  1 -1 -3 -2  0 -3 -1  4 
    5 W   -3 -3 -4 -5 -3 -2 -3 -3 -3 -3 -2 -3 -2  1 -4 -3 -3 12  2 -3 
    6 A    5 -2 -2 -2 -1 -1 -1  0 -2 -2 -2 -1 -1 -3 -1  1  0 -3 -2  0 
    7 L   -2 -2 -4 -4 -1 -2 -3 -4 -3  2  4 -3  2  0 -3 -3 -1 -2 -1  1 
    8 L   -1 -3 -3 -4 -1 -3 -3 -4 -3  2  2 -3  1  3 -3 -2 -1 -2  0  3 
    9 L   -1 -3 -4 -4 -1 -2 -3 -4 -3  2  4 -3  2  0 -3 -3 -1 -2 -1  2 
   10 L   -2 -2 -4 -4 -1 -2 -3 -4 -3  2  4 -3  2  0 -3 -3 -1 -2 -1  1 
   11 A    5 -2 -2 -2 -1 -1 -1  0 -2 -2 -2 -1 -1 -3 -1  1  0 -3 -2  0 
   12 A    5 -2 -2 -2 -1 -1 -1  0 -2 -2 -2 -1 -1 -3 -1  1  0 -3 -2  0 
   13 W   -2 -3 -4 -4 -2 -2 -3 -4 -3  1  4 -3  2  1 -3 -3 -2  7  0  0 
   14 A    3 -2 -1 -2 -1 -1 -2  4 -2 -2 -2 -1 -2 -3 -1  1 -1 -3 -3 -1 
   15 A    2 -1  0 -1 -2  2  0  2 -1 -3 -3  0 -2 -3 -1  3  0 -3 -2 -2 
   16 A    4 -2 -1 -2 -1 -1 -1  3 -2 -2 -2 -1 -1 -3 -1  1  0 -3 -2 -1 
   ...
   37 S    2 -1  0 -1 -1  0  0  0 -1 -2 -3  0 -2 -3 -1  4  1 -3 -2 -2 
   38 G    0 -3 -1 -2 -3 -2 -2  6 -2 -4 -4 -2 -3 -4 -2  0 -2 -3 -3 -4 
   39 T    0 -1  0 -1 -1 -1 -1 -2 -2 -1 -1 -1 -1 -2 -1  1  5 -3 -2  0 
   40 W   -3 -3 -4 -5 -3 -2 -3 -3 -3 -3 -2 -3 -2  1 -4 -3 -3 12  2 -3 
   41 Y   -2 -2 -2 -3 -3 -2 -2 -3  2 -2 -1 -2 -1  3 -3 -2 -2  2  7 -1 
   42 A    4 -2 -2 -2 -1 -1 -1  0 -2 -2 -2 -1 -1 -3 -1  1  0 -3 -2  0 
   ...

FIGURE 5.5. Portion of a PSSM
from a PSI-BLAST search using
RBP4 (NP_006735) as a query.
The 199 amino acid residues of
the query are represented in rows;
the 20 amino acids are in columns.
Note that for a given residue such
as alanine the score can vary (com-
pare A14, A15, and A16, which
receive scores of 3, 2, and 4). The
tryptophan in position 40 is invar-
iant in several hundred lipocalins.
Compare the score of W40, W3,
or W5 (each receives þ12) with
W13 (þ7); in the W3, W5, and
W40 positions a match is rewarded
more highly, and the penalties for
mismatches are substantially
greater. A PSSM such as this one
allows PSI-BLAST to perform
with far greater sensitivity than
standard blastp searches.

You can see the results of nine
iterations for the pairwise align-
ment of RBP4 to apolipoprotein D
in web document 5.2 at Q http://
www.bioinfbook.org/chapter5.

The accession number for human
RBP4 is NP_006735. To restrict
the search to bacteria, use the
command Bacteria (taxid:2).
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PSI-BLAST errors: the corruption problem

The main source of error in PSI-BLAST searches is the spurious amplification of 
sequences that are unrelated to the query.

There are three main approaches to stopping corruption of PSI-BLAST queries: 
• Perform multi-domain splitting of your query sequence
• If a query protein has several different domains PSI-BLAST may find database 

matches related to both individually. One should not conclude that these hits 
with different domains are related. 

- Often best to search using just one domain of interest.

• Inspect each PSI-BLAST iteration removing suspicious hits.
• E.g., your query protein may have a generic coiled-coil domain, and this may 

cause other proteins sharing this motif (such as myosin) to score better than 
the inclusion threshold even though they are not related.

• - Use your biological knowledge!

• Lower the default expect level (e.g., E = 0.005 to E = 0.0001).
• This may suppress appearance of FPs (but also TPs) 



Profile advantages and disadvantages

Advantages:
• Quantitate with a good scoring system

• Weights sequences according to observed diversity 
• Profile is specific to input sequence set

• Very sensitive
• Can detect weak similarity

• Relatively easy to compute
• Automatic profile building tools available

Disadvantages:
• If a mistake enters the profile, you may end up with irrelevant data
• The corruption problem!     

• Ignores higher order dependencies between positions 
• i.e., correlations between the residue found at a given position and those found 

at other positions (e.g. salt-bridges, structural constraints on RNA etc...)

• Requires some expertise to use proficiently



Outline of lectures 13 and 14

In the next two lectures we will cover:

• Sequence motifs and patterns
• Finding functional cues from conservation patterns
• Defining and using patterns and their limitations

• Sequence profiles and position specific scoring matrices (PSSMs)
• Building and searching with profiles
• Their advantages and limitations

• PSI-BLAST algorithm
• Application of iterative PSSM searching to improve BLAST sensitivity

• Hidden Markov models (HMMs)
• More versatile probabilistic model for detection of remote similarities
• Defining HMMs, searching with HMMs and generating MSAs 
• PFAM, SMART, GENSCAN, Developing and applying your own HMMs

• Summary and example problems



Homework questions 	 	 	 	 	 	 	 Due 10/27/11

From homework 7
B3. We know that myoglobin is homologous to alpha globin and beta globin; all are 
vertebrate members of a globin superfamily. Indeed myoglobin shares a very 
similar three-dimensional structure with alpha and beta globin.

a)Using human myoglobin (P02144) as a query in a blastp search against 
human RefSeq proteins, what E-value and score does “hemoglobin subunit 
alpha” and “hemoglobin subunit beta” receive?

b)Perform the same search using PSI-BLAST, what scores do these proteins 
receive in iteration 2? 

c)How many PSI-BLAST iterations do you think are sensible for a reasonable 
coverage of the globin superfamily? Please explain your answer...

TIP: ! Find the FASTA sequence for P02144 at http://www.uniprot.org
!      Use NCBI blastp and PSI-BLAST from http://blast.ncbi.nlm.nih.gov/



That’s it!  


