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Objective:
Provide an introduction to the practice of
structural bioinformatics, major goals, current
research challenges, and application areas.




Q. What does Bioinformatics mean to you?

“Bioinformatics is the application of computers to the collection, archiving, organization,
and interpretation of biological data.” [Orengo, 2003]

... Bioinformatics is a hybrid of biology and computer science
... Bioinformatics is computer aided biology!

Q. So what is STRUCTURAL bioinformatics?

* Structural bioinformatics is computer aided structural biology!
* Characterizes biomolecules and their assembles at the molecular & atomic
level.

Q. Why should we care?
 Because biomolecules are “nature’s robots” [Tanford, 2001 ]

... and because it is only by coiling into specific 3D structures
that they are able to perform their functions
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TRADITIONAL FOCUS PROTEIN, DNA
AND SMALL MOLECULE DATA SETS
WITH MOLECULAR STRUCTURE

Protein DNA Small Molecules
(PDB) (NDB) (CCDB)




Motivation 1:
Detailed understanding of
molecular interactions

Provides an invaluable structural
context for conservation and
mechanistic analysis leading to

functional insight.
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[ Cemputational modeling can AR

provide detailed insight into
functional interactions, their
regulation and potential
consequences of perturbation.

Grant et al. PLoS. Comp. Biol. (2010)
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Motivation 2:
Lots of structural data is
becoming available

Structural Genomics has
contributed to driving
down the cost and time
required for structural .

determination R D . Pk 1

Total Number of Structures in RCSB PDB

Data from: http://www.rcsb.org/pdb/statistics/
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down the cost and time
required for structural
determination

Image Credit: “Structure determination assembly line” Adam Godzik




Motivation 3:

Theoretical and
computational predictions
have been, and continue
to be, enormously
valuable and influential!
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SUMMARY OF KEY MOTIVATIONS

Sequence > Structure > Function
Structure determines function, so understanding structure
helps our understanding of function

Structure is more conserved than sequence
Structure allows identification of more distant evolutionary
relationships

Structure is encoded in sequence
Understanding the determinants of structure allows design and
manipulation of proteins for industrial and medical advantage
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Goals:

* Analysis

* Visualization
« Comparison
 Prediction

* Design

Scarabelli and Grant. PLoS. Comp. Biol. (2013)
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Goals:

* Analysis

* Visualization
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* Design

Grant et al. unpublished




Goals:

* Analysis

* Visualization
« Comparison
 Prediction
 Design

Grant et al. PLoS One (201 1,2012)




Goals:

* Analysis
Visualization
Comparison
Prediction
Design

Grant et al. PLoS Biology (201 1)




MAJOR RESEARCH AREAS
AND CHALLENGES

Include but are not limited to:

* Protein classification

 Structure prediction from sequence

 Binding site detection

 Binding prediction and drug design

* Modeling molecular motions

 Predicting physical properties (stability, binding affinities)
 Design of structure and function

* efc...

With applications to Biology, Medicine, Agriculture and Industry
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SIERARCHICAL STRUCTURE OF PREIBEIENS

Primary > Secondary > Tertiary > Quaternary

amino acid Alpha Polypeptide Assembled
residues helix chain subunits

Image from: http://www.ncbi.nlm.nih.gov/books/NBK2 [ 58 |/
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SNIINGTACIDS CAN BE GROUREDFENSEISHS

PHYSIOCHEMICAL PROPERTIES
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e Steric hindrance dictates torsion angle preference

 Ramachandran plot show preferred regions of ¢ and  dihedral
angles which correspond to major forms of secondary structure

Image from: http://www.ncbi.nlm.nih.gov/books/NBK2 [ 58 |/




MEI@OR SECONDARY S TRUCTUREIRESES
ALPHA HELIX & BETA SHEET

a-helix B-sheets

® Most common from has 3.6 residues per turn
(number of residues in one full rotation of 360°)

e Hydrogen bonds (dashed lines) between residue
i and j+4 stabilize the structure

e The side chains (in green) protrude outward
e 3, ,-helix and Tt-helix forms are less common

Hydrogen bond: i=i+4

Image from: http://www.ncbi.nlm.nih.gov/books/NBK2 [ 58 |/




MEI@OR SECONDARY S TRUCTUREIRESES
ALPHA HELIX & BETA SHEET

In antiparallel 3-sheets
e Adjacent B-strands run in opposite directions

e Hydrogen bonds (dashed lines) between NH and CO stabilize
the structure

e The side chains (in green) are above and below the sheet

Image from: http://www.ncbi.nlm.nih.gov/books/NBK2 [ 58 |/




MEI@OR SECONDARY S TRUCTUREIRESES
ALPHA HELIX & BETA SHEET

In parallel B-sheets
e Adjacent B-strands run in same direction

e Hydrogen bonds (dashed lines) between NH and CO stabilize
the structure

e The side chains (in green) are above and below the sheet

Image from: http://www.ncbi.nlm.nih.gov/books/NBK2 [ 58 |/




sl DOES A PROTEIN COGKEEISES

e Hidden in water?
* A close-packed globular object?

* A chain of connected secondary structures!?




* Proteins are stable in water




* Proteins closely interact with water




Proteins are close packed solid but flexible objects




* Due to their large size and complexity it is often

hard to see whats important in the structure




* Backbone or main-chain representation can help
trace chain topology




* Backbone or main-chain representation can help
trace chain topology & reveal secondary structure




e Simplified secondary structure representations
are commonly used

* Now we can clearly see 2°, 3° and 4° structure




Key forces affecting structure:

* H-bonding

* Van der Waals

* Electrostatics

* Hydrophobicity
* Disulfide Bridges

Hydrogen-  Hydrogen-
bond donor  bond acceptor
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Key forces affecting structure:

. A B
* H-bonding AE= TT27 8
* Van der Waals Repulsion
* Electrostatics AR .

* Hydrophobicity Attraction
* Disulfide Bridges

— d— 3A<d<4A




Key forces affecting structure:

* H-bonding

* Van der Waals

* Electrostatics

* Hydrophobicity
* Disulfide Bridges

d d=28A
H
—C L © ©® N-—
o H

carboxyl group and amino group

(some time called IONIC BONDs or SALT BRIDGEs)

Coulomb’s law

% Kd,d,
© , 0 E=—

E = Energy
k = constant
D = Dielectric constant (vacuum = 1; H,O = 80)

g; & g, = electronic charges (Coulombs)

o

r = distance (A)




Key forces affecting structure:

* H-bonding

* Van der Waals

* Electrostatics

* Hydrophobicity
* Disulfide Bridges

The force that causes hydrophobic molecules or nonpolar portions of molecules to
aggregate together rather than to dissolve in water is called Hydrophobicity
(Greek, “water fearing”). This is not a separate bonding force; rather, it is the result
of the energy required to insert a nonpolar molecule into water.




Forces affecting structure:
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Hair contains lots of disulfide bonds
which are broken and reformed by heat
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Crystal structure at 1.9-A resolution of h i
orally bioavailable inhibitor of the HIV proteases.

defici

y virus (HIV) II protease complexed with L-735,524, an

Chen, 2., Li, Y., Chen, E., Hall, D.L., Darke, P.L.,", Culberson, C., Shafer, J.A..°, Kuo, L.C.~

Journal: (1994) J.Biol.Chem. 269: 26344-26348

PubMed: 7929352 (¢ -
Search Related Articles in PubMed )

PubMed Abstract:

L-735,524 is a potent, orally bioavailable inhibitor of human immunodeficiency virus (HIV) protease currently in a Phase 11 clinical trial.
We report here the three-dimensional structure of L-735,524 plexed to HIV-2 pr at 1.9-A resolution, as well as the structure
of the native HIV-2 protease at 2.5-A resolution. The structure of HIV-2 protease is found to be essentially identical to that of HIV-1
protease. In the crystal lattice of the HIV-2 protease complexed with L-735,524, the inhibitor is chelated to the active site of the
homodimeric enzyme in one orientation. This feature allows an unambiguous assignment of protein-ligand interactions from the electron
density map. Both Fourier and difference Fourier maps reveal clearly the closure of the flap domains of the protease upon L-735,524
binding. Specdific interactions between the enzyme and the inhibitor indude the hydroxy group of the hydroxyaminopentane amide
molety of L-735,524 ligating to the carboxyl groups of the essential Asp-25 and Asp-25" enzymic residues and the amide oxygens of the
Inhibitor hydrogen bonding to the backbone amide nitrogen of lle-50 and lle-50' via an intervening water molecule. A second bridging
water molecule is found between the amide nitrogen N2 of L-735,524 and the carboxy! oxygen of Asp-29'. Although other hydrogen
bonds also add to binding, an equally significant contribution to affinity arises from hydrophobic interactions between the protease and
the inhibitor throughout the pseudo-symmetric $1/51', S2/S2', and S3/S3' regions of the enzyme. Except for its pyridine ring, all
lipophilic moieties (t-butyl, indanyl, benzyl, and piperidyl) of L-735,524 are rigidly defined in the active site.

Keywords:
Aspartic Acid Endopeptidases, Binding Sites, Crystallography, X-Ray, Drug Resistance, HIV Pr
Pyridines

, HIV Pri Inhibi

s, Indinavir,

Related Structures:
Primary Citation of: 1HSG 1HSH 1HSI

Organizational Affiliation:
Department of Biological Chemistry, Merck Research Laboratories, West Point, Pennsyivania 19486,
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Structural Classification of Proteins
- e il

Protein: Human immunodeficiency virus type 1 protease from Human
immunodeficiency virus type 1 [TaxId: 11676]

SQ P35963 57-155 ! SQ P04587 69-167 ! SQ P03366 69-167 ! SQ P03367 69-167 ! SQ P03368 69-167

i?

Lineage:

W SCOP & CATH databases

;. Class:Al‘l_bGIApmlcins[48724] . . . . .
| e classify protein structural similarities

barrel, closed; n=6, S=10, complex topology
4. Superfamily: Acid proteases [50630]
Superfamily B — *
5. Family: Retroviral protease (retropepsin) [50631]
dimer of identical mono-domain chains, each containing (6,10) barrel
. Protein: Human immunodeficiency virus type 1 protease [50632]
. Species: Human immunodeficiency virus type 1 [TaxId: 11676] [50633]
SQ P35963 57-155 ! SQ P04587 69-167 ! SQ P03366 69-167 ! SQ P03367 69-167 ! SQ P03368 69-167

PDB Entry Domains:

~ N

1. 2nmz =xa
automatically matched to dls65a_
complexed with roc, so4; mutant
1. region a:1-99 [138386] exa.
2. 2nmz =xa
automatically matched to dls65a_
complexed with roc, so4; mutant
1. region b;101-199 [138387] mxa.
3. 3djk ==
automatically matched to dlfgcc_
complexed with cl, g55, na; mutant
1. region a:1-99 [157758] exa.
4. 3djk ==
automatically matched to dlfgcc_
complexed with cl, g55, na; mutant
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CATH / Gene3D

16 million protein domains classified into 2,626 superfamilies

What's New? Latest News Latest Release

The CATH website has recently undergone a big

overhaul. We really hope you find the new pages more CATH @ VIZBI 2013 CATH YOS based on PR detad Seplemiber 20,2011
useful, easier to use and quicker tg load. Please get in March 21, 2013 173,536 CATH Domains
touch and let us know what you think.
p 2,626 CATH Superfamilies
Searching CATH E— ST s
N 51,334 PDBs

» Search by ID / keyword ; * ‘

« Search by FASTA sequence

« Search by PDB structure e = S e 3 Gene3D vi1 released March 18, 2012
Example pages "Evolution of Protein Architecture” - Dr Sillitoe 1,639 Cellular Genomes

presents the CATH resource at VIZBI (Harvard/MIT) o
1,016 Viral Genomes

« PDB "2bop" « Functional Family

« Domain "1cukAO1" o FunFam Alignment 14,963,305 Protein Sequences

* Relatives of "1cukA01" « Search for "enolase”

« Superfamily *“HUPs* « Superfamily 16,297,076 CATH Domain Predictions

Comparison

Citing CATH
If you find this resource useful, please consider citing the reference that describes this work:
New functional families (FunFams) in CATH to improve the mapping of conserved functional sites to 3D structures.
Silitce I, Cuff AL, Dessailly BH, Dawson NL, Furnham N, Lee D, Lees JG, Lewis TE, Studer RA, Rentzsch R, Yeats C, Thornton JM, Orengo CA
Nucieic Ackds Aes. 2013 Jan Pubmed: 23203873

CATH News Get Started Download About

Support Documentation WebServices Orengo Group

Jobs Tutorials Software Web accessibility
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Superfamily Superposition
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Hations

Classification / Domains
Alignments

Structural Neighbourhood
Functional Annotations
Taxonomy Browser
Multi-Domain Organisation

€D Unique GO terms » &) Unique EC terms »

Functional Families

Structural Diversity Domain Organisation

ral comains within this View multi-domain arc

ArenSehsing
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& ArchSchema (requires Java)

Sequence/Structure Diversity

Ovorview of the sequence / structure diversity of

Research Develops
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Species Diversity

€7 unique species »

Enzyme Function
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Superfamily Summary
A ati
Structures
Domains: 2031
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Unique PDBs: 832
Alignments
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FunFam Clusters: 1
Function
Unique EC: 36
Unique GO: 111
Taxonomy
Unique Species: 1468




KEY CONCEPT: POTENTIAL FUNCTIONS
DESCRIBE A SYSTEMS ENERGY AS A FUNCTION
OF ITS STRUCTURE

Two main approaches:
(1). Physics-Based
(2). Knowledge-Based
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PHYSICS-BASED POTENTIALS
ENERGY TERMS FROM PHYSICAL THEORY

UR) = > K —rg)2 4+ Y K™%0 — 0p)2 + \/ e
bonds 3 _ angles y ) -\
Ubond Uangle
dihe o P A
. Pl ey \/ | 4
Udinedral
12 y
sy |(2) -(2)]sse NS
\i JF#i Y] ] i jAi ’IJJ 0 %
Uno:;mnd
Uyong = Oscillations about the equilibrium bond length \}:f‘ \JA \
Ungle = 0scillations of 3 atoms about an equilibrium bond angle ——
U ginedra; = torsional rotation of 4 atoms about a central bond \ 7 Nl
U onbong = NON-bonded energy terms (electrostatics and Lenard-Jones) g

CHARMM PE. function, see: http://www.charmm.org/




PHYSICS-ORIENTED APPROACHES

Weaknesses
Fully physical detail becomes computationally intractable
Approximations are unavoidable
(Quantum effects approximated classically, water may be treated crudely)
Parameterization still required

Strengths
Interpretable, provides guides to design
Broadly applicable, in principle at least
Clear pathways to improving accuracy

Status

Useful, far from perfect

Multiple groups working on fewer, better approxs
Force fields, quantum
entropy, water effects

Moore’s law: hardware improving
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KEY CONCEPT: POTENTIAL FUNCTIONS
DESCRIBE A SYSTEMS ENERGY AS A FUNCTION
OF ITS STRUCTURE

Two main approaches:
(1). Physics-Based
(2). Knowledge-Based
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: 1 stacking




ENERGY DETERMINES PROBABILITY

Probability Energy

(STABILITY)

Basic i1dea: Use probability as a proxy for energy

\/\/-\/ Boltzmann:
—E(r)/RT

p(r)xe

Inverse Boltzmann:

E(r)=-RTIn|p(]

X

Example: ligand carboxylate O to protein histidine N

Find all protein-ligand structures in the PDB with a ligand carboxylate O

1.
2.

3

For each structure, histogram the distances from O to every histidine N
Sum the histograms over all structures to obtain p(rg_,)

Compute E(ry_,) from p(ro.y)




PMF (kcal/mol)

KNOWLEDGE-BASED DOCKING
FOTENTIAES

AR (Ucoce & Martin, | Med. ChemiEi 7 e

A few types of atom pairs, out of several hundred total

Nitrogen+/0xygen' Aromatic carbons Aliphatic carbons
3.0 " " ' . . 3.0 3.0 : : i . -
2.0 20 | 20+
g
1.0 | 1.0 ¢ S 1.0 t
0.0 } 0.0 L 00+
=
10 L 10 | “ o}
20 L -2.0 Y
00 20 40 60 8.0 100 12.0 00 20 40 60 8.0 10.0 120 0.0 20 40 6.0 80 10.0 12.0

Atom-atom distance (Angstroms)

E TS Evdw r

prot-lig
pairs (ij)

Efype(ij) (rij)




LIMITATIONS OF KNOWLEDGE-BASED
POTENTIALS

1. Statistical limitations
(e.g., to pairwise potentials) 100 bins for a histogram of O-N & O-C distances

10 bins for a histogram of O-N distances

q ry

Fo-n

—
Fo-N

2. Even if we had infinite statistics, would the results be accurate?
(Is inverse Boltzmann quite right? Where is entropy?)




KNOWLEDGE-ORIENTED APPROACHES

Weaknesses
Accuracy limited by availability of data
Accuracy may also be limited by overall approach

Strengths

Relatively easy to implement
Computationally fast

Status
Useful, far from perfect
May be at point of diminishing returns
(not always clear how to make improvements)
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Overview of structural bioinformatics
*  Motivations, Goals and Challenges

Fundamentals of protein structure
«  Structure composition, form and forces

Representing and interpreting biomolecular structure
* PDB and SCOP databases

*  Modeling energy as a function of structure
*  Physics based and knowledge based approaches

Example Application Areas

«  Structure based drug discovery
*  Receptor and ligand based approaches
Predicting functional dynamics

*  Molecular dynamics and normal mode analysis
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Compound library
(commercial, in-house,

synthetic, natural) \

High throughput screening

(HTS) \
Hit confirmation

N\

Lead compounds

(e.8., UM Ky) \

Lead optimization
(Medicinal chemistry)

v

Animal and clinical €= potent drug candidates
evaluation (nM K,)




COMPUTER-AIDED LIGAND DESIGN

Aims to reduce number of compounds synthesized and assayed

Lower costs
Reduce chemical waste

Facilitate faster progress




Two main approaches:
(1). Receptor/Target-Based
(2). Ligand/Drug-Based




Two main approaches:
(1). Receptor/Target-Based
(2). Ligand/Drug-Based




SCENARIO |.
RE@EHTOR-BASED DRUG DISE@ ishvg

Structure of Targeted Protein Known: Structure-Based Drug Discovery

HIV Protease/KNI-272 complex




PROTEIN-LIGAND DOCKING

Structure-Based Ligand Design

Docking software
Search for structure of lowest energy Potential function
Energy as function of structure

Q——@®
VDW

QO—?®
Screened Coulombic

Dihedral




STRUCTURE-BASED VIRTUAL SCREENING

Compound 3D structure of target
database (crystallography, NMR,

\ / modeling)

Virtual screening
(e.g., computational docking)

Candidate ligands
2l l

Ligand optimization
Med chem, crystallography,  Experimental assay

modeling \ l

Ligands —> Drug candidates
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NIH MOLECULAR LIBRARIES
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FRAGMENTAL STRUCTURE-BASED
SCREENING

“Fragment” library 3D structure of target

N «

Fragment docking

Compound design

v

Experimental assay and ligand optimization s, Drug candidates
Med chem, crystallography, modeling

N~ - N 7

£ [ Cc
o % N
\ , \ 7 7
N\ 7 \ 7 \ TN 7’
o . . _N
~

http://www.beilstein-institut.de/bozen2002/proceedings/Jhoti/jhoti.html




Multiple non active-site pockets identified

Small organic probe fragment affinities map multiple potential
binding sites across the structural ensemble.

*

1.0
1

Probe Occupancy

0.8

0.0

(AL

T T 1 T
5 12 27 39 48 60 73 79 90 97 106 117

Residue No.

ethanol .
acetone methylamlne benzene

(A% _ra Otk @d ot
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Ensemble docking & candidate inhibitor testing

Top hits from ensemble docking against distal pockets were tested for
inhibitory effects on basal ERK activity in glioblastoma cell lines.

Ensemble computational docking Compound effect on U251 cell line

we == | P-ERK1/2

Total
ERK1/2

1.54

1.0 10 uM

0.5+

P-ERK1/2
(Fold Change/Control)

0.0-
Compound testing in

cancer cell lines

PLoS One (2011, 2012)
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Proteins and Ligand are Flexible

Protein

AG®°

Complex




COMMON SIMPLIFICATIONS USED IN
SENSICS-BASED DOENNE

Quantum effects approximated classically
Protein often held rigid
Configurational entropy neglected

Influence of water treated crudely




Two main approaches:
(1). Receptor/Target-Based
(2). Ligand/Drug-Based




Scenario 2

Structure of Targeted Protein Unknown: Ligand-Based Drug Discovery

e.g. MAP Kinase Inhibitors

.

Using knowledge of
existing inhibitors to
discover more




Why Look for Another Ligand if You Already Have Some?

Experimental screening generated some ligands, but they don’t bind tightly
A company wants to work around another company’s chemical patents

An high-affinity ligand is toxic, is not well-absorbed, etc.




LIGAND-BASED VIRTUAL SCREENING

Compound Library Known Ligands

~N v

Molecular similarity
Machine-learning
Etc.

v

Candidate ligands

Optimization l

Med chem, crystallography, Assay

modeling V\ l

Actives ——3 Potent drug candidates




Clrl R IGE7A S M 7 T
LIGAND-BASED DRUG-DISCOVERY

Compounds
(available/synthesizable)

Different

mssss) Don’t bother

Test experimentally




CHEMICAL FINGERPRINTS
SINARYESTRUGCTURESSEES
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FINGERPRINTS
Tanimoto Similarity T & =025
or Jaccard Index,T W
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POTENTIAL DRAWBACKS OF PLAIN
@ Sl AL SIMITARITRG

May miss good ligands by being overly conservative

Too much weight on irrelevant details




Abstraction and Identification of
Relevant Compound Features

Ligand shape and common substructures
Pharmacophore models
Chemical descriptors

Statistics and machine learning




Maximum Common Substructure
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Pharmacophore Models

Ddppako (drug) + Dopd (carry)

A 3-point pharmacophore

Bulky hydrophobe




Molecular Descriptors
More abstract than chemical fingerprints

Physical descriptors
molecular weight

charge m
dipole moment @* )k t‘
number of H-bond donors/acceptors

number of rotatable bonds * Rotatable bonds

hydrophobicity (log P and clogP)
Topological

branching index
measures of linearity vs interconnectedness

Etc. etc.




A High-Dimensional “Chemical Space”

Each compound is at a point in an n-dimensional space
Compounds with similar properties are near each other

Descriptor 3
©.

Descriptor 2

Point representing a

® compound in descriptor
space




Statistics and Machine Learning
Some examples

Partial least squares
Support vector machines

Genetic algorithms for descriptor-selection




Summary

Overview of drug discovery

Computer-aided methods
Structure-based
Ligand-based

Interaction potentials
Physics-based

Knowledge-based (data driven)

Ligand-protein databases, machine-readable chemical formats

Ligand similarity and beyond




PREDICTING FUNCTIONAL DYNAMICS
MISE=EUILAR DYNAMICS SIMUIESIREINE

Proteins are intrinsically flexible molecules with internal motions
that are often intimately coupled to their biochemical function.
E.g. ligand and substrate binding, allosteric regulation

* Thus knowledge of dynamics can provide a deeper
understanding of the mapping of structure to function.

Molecular dynamics (MD) and normal mode analysis (NMA)
are two major methods for predicting and characterizing
molecular motions




Molecular Dynamics Simulation

e Use force-field to find
Potential energy between
all atom pairs

* Move atoms to next state

* Repeat to generate
trajectory

McCammon, Gelin & Karplus, Nature (1977)




@

MD ALGORITHM
Q ety vieran

* [nitialize system (0,0}
— (Randomly) assign velocities.
— Find the potential energy between all atom pairs

* Move and integrate equations of motion.
— Find new velocities and positions

* Repeat
Leapfrog algorithm

1  solve for a; at t using:

2 update viatt+ At/2 using: vi(t + At/2) = vi(t - At/2) + At

3 updater; at t + At using: ri(t + At) = r,(t) + v,(t + At/2) At




MD Prediction of Functional Motions

0.00 ns

0.00 ns

Yao and Grant, Biophys J. (2013)




Key Residues Mediating Coupling
Between Residues And Nucleotide

180°

Yao and Grant, Biophys J. (2013)




Normal Mode Analysis (NMA)

* Accelerated MD is still time-consuming

 Elastic network model (ENM)
—Finish in seconds!

e 1 bead/
1 amino acid
e Connected by
springs

Atomic a. a.




Normal mode of acetylcholine receptor

*The receptor displays an twist like motion, responsible for the

axially symmetric opening and closing of the ion channel

108




Problems in Conventional ENM-NMA

Cumulative Overlap

1.0
0.8
0.6
0.4
0.2
0.0

 Work well for elongated multi-domain

systems such as GroEL

e But, results are dependent on the input

structure - open forms work best!

—— Open state
<= Closed state

4 6 8 10
Mode Index

Overlap: Dot product of modes and
position difference vector between
open and close states




NMA Predicts High Flexibility in Functional Regions
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Lars, Yao & Grant, in preparation




SUMMARY

Structural bioinformatics is computer aided structural biology
Structural data plays a central role in bioinformatics
Reviewed the fundamentals of protein structure

Introduced both physics and knowledge based modeling
approaches for describing the structure, energetics and dynamics
of proteins computationally

Described common applications in drug design and for prediction
of functional motions.
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