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Recap of the last lecture: #13

e Sequence motifs and patterns
Finding functional cues from sequence conservation
Patterns that describe a motif using a qualitative regular expression sequence
» [LFI]-x-G-[PT]-P-G-x-G-K-[TS]-[AGSI]
Defining and using patterns and their limitations

e Sequence profiles
Profiles describe a motif using quantitative information captured in a PSSM
Building log-likelihood ratio PSSMs
The average score method for protein PSSMs
Scoring sequences and searching with profiles

e PSI-BLAST algorithm
lterative PSSM searching to improve BLAST search sensitivity
PSSM advantages and limitations
The danger of PSSM corruption (triangular inequality)

e Profile software and databases




Outline of this lecture: #14

e Major PSSM limitations
Do not capture positional dependencies
Hard to recognize pattern instances that contain indels
Do not handle boundary detection problems well

e Modeling motifs using Markov chains:
Pros and cons of Markov models

e Hidden Markov models (HMMs)
More versatile full probabilistic model for detection of remote similarities
Architecture and parameterization
Boundary detection
Key algorithms: Viterbi, Forward and Baum-Welch algorithms
Scoring sequences and generating MSAs
HMM limitations

e HMM software and databases
Summary and example usage




Position Specific Scoring Matrices

A sequence profile is a position-specific scoring matrix (or PSSM) that gives a
quantitative description of a sequence motif.

A simple PSSM is a Log odds scoring matrix that has as many columns as there
are positions in the alignment, and either 4 rows (one for each DNA nucleotide) or

20 rows (one for each amino acid).
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See Lecture #13




Problems with PSSMs

PSSMs work well for fixed length motifs in which the sites are more or less
independent - i.e., ungapped motifs

However there are other kinds of motifs for which PSSMs are not well suited.
PSSMs cannot:

1. model positional dependencies

2. recognize pattern instances containing insertions or deletions
3. model variable length patterns

4. detect boundaries

GCATAGCAGGTATCCGAATAGC....

= WEM[t[i+l],l]




Problems with PSSMs: 1. Positional dependencies

Do not capture positional dependencies

WEIRD D 0.6

WEIRD E [.0

WEIRD Q 0.4

WEIQH R 0.6
W1ll1.0

Note: We never see QD or RH, we only see RD and QH.
However, P(RH)=0.24, P(QD)=0.24, while P(QH)=0.16




Problems with PSSMs: 2. Insertions and deletions

Hard to recognize pattern instances that contain indels

D 0.8 0.8 08 08 2.4

E 0.6 29 06 06 1.6

H 2.0 20 20 2.0 3.0 ‘WETIRb

| 0.8 08 3.1 080.8 5.0+29+1.2+14+1.5=11
Q I.1 LI 1.1 2.1 I.]

R 0.8 08 08 28 0.8 WIETIRD‘

W 5.0 2727 27 1.8 1.2+1.8+3.1+3.0+3.4=125

WETIRD

50+2.9+3.1+3.0+3.4=18.4




Problems with PSSMs: 3. Variable length motifs

Cannot easily deal with variable length motifs

WETIRD
Gaps can be represented by
WE-IRD expanding Y. but what size window

WETIQH should be used to score new
instances of the motif???
WE-IRD

WETIQH

XXWETIRDXXXXXXXWEIQH|IXXXX




Problems with PSSMs: 4. Detecting boundaries

Do not handle boundary detection problems well
E.g. Label every element in the sequence with a 0 (not in pattern) or a 1 (in pattern)

Examples of boundary detection problems include:
Recognition of regulatory motifs

Recognition of protein domains

Intron/exon boundaries

Gene boundaries

Transmembrane regions

Secondary structure elements (helices and strands)

XXXXXXXXXXXYYYYYYXXXXXXX
000000000001111110000000




These shortcomings of PSSMs set the stage for a new kind of profile,
based on Markov chains, called Hidden Markov models (HMMs)

modeling positional dependencies
recognizing pattern instances with indels
modeling variable length patterns
detecting boundaries

vV v Vv WV




Markov chains

Markov chains are stochastic processes that undergo transitions between a
finite series of states in a chainlike manner.

The system transverses states with probability
p(x1, X2, X3, ...) = p(x1) p(xz| x1) p(xs| X2) p(X4| x3)...

i.e. Markov chains are memoryless: the probability that the chain is in state x;
at time t, depends only on the state at the previous time step and not on the
past history of the states visited before time t-1.

This specific kind of "memorylessness" is called the Markov property.

EThe Markov property states that the conditional probability distribution
for the system at the next step (and in fact at all future steps) depends
.only on the current state of the system, and not additionally on the state
. of the system at previous steps.




Markov chains...

Markov chains, and their extension hidden Markov models (HMMs), are commonly
represented by state diagrams, which consist of states and connecting transitions

&
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C
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E.g., A general Markov chain modeling DNA.
Note that any sequence can be traced
through the model by passing from one state
to the next via the transitions.

A transition probability parameter (a;) is associated with each transition (arrow) and
determines the probability of a certain state (S)) following another state (S)).

A Markov chain is defined by:

a finite set of states, S, S>...Sn
a set of transition probabilities: aj = P(q:+1=Sj|qi=S))




Simple Markov chain example for x={a, b}

Observed sequence: X = abaaababbaa

Model:
" it Prev | Next | Prob
ransrion. il a initial state se— -
probabilities J J . art . |a0.
a 2 | 0.7 probability | probs '“ [ b 0.5
distribution
a b 0.3
b a 0.5
b b 0.5

P(x) = 0.5 x 0.3 x 0.5 x 0.7 x 0.7 x 0.3 x 0.5 x 0.3 x 0.5 x 0.5 x 0.7

Q. Can you sketch the state diagram with labeled transitions for this model?




----------------------------------------------------------------------------------------------------------
L}

Typical questions we can ask with Markov chains include: .
e What is the probability of being in a particular state at a particular time?

(By time here we can read position in our query sequence)

e What is the probability of seeing a particular sequence of states?
(l.e., the score for a particular query sequence given the model)

Q. What do Markov chains add over the traditional PSSM approach?
In particular how do Markov chains deal with the following PSSM weaknesses?

1. Positional dependencies
2. Pattern instances containing insertions or deletions

3. Variable length patterns, and
4. The detection boundaries (i.e. segmentation of sequences)




Markov chains: 1. Positional dependencies \/

The connectivity or topology of a Markov chain can easily be designed to capture
dependencies and variable length motifs.

WEIRD

WEIRD

WEIQH
WEIRD s

WEIQH

Recall that a PSSM for this motif would give the sequences WEIRD and WEIRH
equally good scores even though the RH and QR combinations were not observed




Markov chains: 2. Insertions and deletions \/

To address pattern instances with gaps and variable length motifs, we can
construct a Markov chain to recognize a query sequences with insertions (via an
extra insertion state) and deletions (via extra transitions (edges))

insertion state

WETIRD
WE-IRD
WETIQH
WE-IRD

deletions




Markov chains: 3. Boundary detection ?

Giving a sequence we wish to label each symbol in the sequence according to its
class (e.g. transmembrane regions or extracellular/cytosolic)

} Extracellular

. Membrane
(hydrophobic)

tend to be hydrophobic in composition

Given a training set of labeled sequences we can begin by modeling each amino
acid as hydrophobic (H) or hydrophilic (L)
i.e. reduce the dimensionality of the 20 amino acids into two classes

E.g., A peptide sequence can be represented as a sequence of Hs and Ls.
e.g. HHHLLHLHHLHL...




Markov chains: boundary detection...

A simpler question: is a given sequence a transmembrane sequence?

A Markov chain for recognizing transmembrane sequences

/_\ e States: SH, SL

L | )os e S={H,L}
e i(H) = 0.6, ri(L) = 0.4

0.3

Question: Is sequence HHLHH a transmembrane protein?

P(HHLHH) = 0.6 x 0.7 x 0.7 x 0.3 x 0.7 x 0.7 = 0.043

Problem: need a threshold,
threshold must be length dependent




Markov chains: boundary detection

We can classify an observed sequence (O = O+, Oy, ...) by its log odds ratio

transmembrane model null model

Transmembrane (TM) Extracellular/cytosolic (E/C)
e 1i(H) = 0.6, r(L) = 0.4 e (H) = 0.5, m(L) = 0.5

P(HHLHH | TM) _ 0.6 x 0.7 x 0.7 x 0.3 x 0.7 x 0.7 _ 0.043
PHHLHH|EC) 0.5x0.5x05x0.5x05x0.5 0.016

=2.69

In other words, it is more than twice as likely that HHLHH is a
transmembrane sequence. The log-odds score is: 0g2(2.69) = 1.43




Side note: Parameter estimation

Both initial probabilities (r1(/))and transition probabilities (aj) are determined from
known examples of transmembrane and non-transmembrane sequences.

0.7

e initial probabilities tt(H), (L)
e transition probabilities: anH, anL, ain and ayy.

0.3

Given labeled sequences (TM and E/C), we determine the initial probabilities 1(i) by
counting the number of sequences that begin with residue /.

To determine transition probabilities, aj, we first determine A
Aj (the number of transitions from state j to j in the training a, = —
data, i.e. count the number of jj pairs in the training data). Z Al.j
Then normalize by the number of i* pairs. ’




Side note: Parameter estimation...

Both initial probabilities (r1(/))and transition probabilities (aj) are determined from
known examples of transmembrane and non-transmembrane sequences.

n(H) = # of sequences that begin with H,
normalized by the total # of training
sequences

e 1i(H) = 0.6, (L) = 0.4

HHHLILHHHLLLHLHLLHLLLHLHHHL
HHHILHHLHLLLLILHHHHLLLHHHHHIL
HH. .. @Auw=12, As=40

A #HL pairs 12

HL
A, # H* pairs 40

Ay, =

l




Boundary detection challenge

Given sequence of Hs and Ls, find all transmembrane regions:

Using our Markov models we would still need to score successive overlapping
windows along the sequence, leading to a fuzzy boundary (just as with a
PSSM).

To approach this question we can construct a new four state model by adding
transitions connecting the TM and E/C models

Transitions between the M states and
L 0.2 the E/C states indicate boundaries
between membrane regions and
0.1 cytosolic or extracellular regions.
Lec 0.4 However this is no longer a standard

Markov chain!




Boundary detection challenge...

In a Markov chain, there is a one-to-one correspondence between symbols and
states, which is not true of our new merged four state, two symbol model.

For example, both Hy and He/c are associated with hydrophilic residues.
- This four-state transmembrane model is a hidden Markov model.

LE/C 0.4

f




So whats hidden”?

We will distinguish between the observed parts of the problem and the hidden
parts
¢ |n the Markov models we have considered previously it is clear which states
account for each part of the observed sequence
Due to the one-to-one correspondence between symbols and states

¢ |n our new model, there are multiple states that could account for each part of
the observed sequence
i.e. we don’t know which state emitted a given symbol from knowledge of the
sequence and the structure of the model
» This is the hidden part of the problem

LE/C 0.4

oy




For our Markov models
e Given HLLH..., we know the exact state sequence (qo=SH, q1=SL, 92=S|, ...)

For our HMM

e Given HLLH..., we must infer the most probable state sequence

e This HMM state sequence will yield the boundaries between likely TM and E/C
regions

HM, 1M, LM, HM

HM, LM, 1M, HE/C

HM, LM, LH/C, HM

HM, 1M, LH/C, HE/C
HM, LE/C, LM, HM

HM, LE/C, 1M, HE/C
HM, LE/C, LH/C, HM,
HM, LE/C, LH/C, HE/C,
HE/C, LM, 1M, HM
HE/C, LM, LM, HE/C
HE/C, 1M, LH/C, HM
HE/C, LM, LH/C, HE/C
HE/C, LE/C, LM, HM
HE/C, LE/C, LM, HE/C
HE/C, LE/C, LH/CM, HM
HE/C, LE/C, LH/CM, HE/C




Side note: HMM states as sequence emitters

It’s useful to imagine HMM states emitting symbols each time they are visited

In this way, transversing the model will “generate” a sequence with a certain
probability (i.e. “score”).

This probability is a product of the state path taken through the model
That is, it depends on initial probabilities, transition probabilities and emission
probabilities (the probability that a visited state emits a particular symbol)
along the path

There may be many possible paths that can generate the same sequence

An HMM is a full probabilistic model — the model parameters 8 and the overall
sequence “scores” P(x, S | HMM, 0) are all probabilities. As a result, we can use
standard Bayesian probability theory to manipulate these numbers in powerful
ways, including optimizing parameters, calculating confidence in predictions, and
interpreting the statistical significance of scores.




Hidden Markov models (HMMs)

Markov Chains Hidden Markov Models
e States: Sy, S2...Sn e States: Sy, S2...Sn

e |nitial probabilities: Tt; Initial probabilities: Tt;
e Transition probabilities: aj Transition probabilities: aj
Alphabet of emitted symbols, X

Emission probabilities: ei(a)
probability state i emits symbol a

One-to-one correspondence Symbol may be emitted by more
between states and symbols than one state

Similarly, a state can emit more
than one symbol




Example three state HMM

In this example we will use only one state for the transmembrane segment (M) and
use emission probabilities to distinguish between H and L residues. We will also

add separate E & C states with distinct emission probabilities.

0.25

______________________ 03 | 025

ei e e;
H 0.2 H 0.9 H 0.3 aj =
L 0.8 L 0.1 L 0.7

07 03 0
0.25 0.5 0.25

0O 03 0.7




Side note: Parameter estimation

As in the case of Markov chains, the HMM parameters can be learned from
labeled training data

Note that we now have to learn the initial probabilities, transition probabilities and
emission probabilities

E,(x)

Y E(x)

A.
0 =i ()=
J Zj'AiJ"

0.25 0.3 E | M| C

T 0 0 1

eilH)| 02| 09|03

e(L)] 0.8 01|07




0.25 0.3

States

Query Sequence

H L L

E

M

C

START




0.25 0.3

Query Sequence

States H H L L
E OX
M 0x0.9
1x0.3
C =0.3

START




0.25 0.3

Query Sequence

States H H L L
E OX
M 0x0.9
1x0.3
C |7 o3
”~
START




0.25

Query Sequence

States H H L L
0x0.9 0.3x0.9x0.3
M = =0.08 1
C 0.3 0.7x0.3x0.3
=0.3 =0.063

_
START




0.25 0.3

Query Sequence

States H H L L
0x0.2
E o -
M 0x0.9 0.3x0.9x0.3
=0 L7 =0.08l
C 1x03 ~ | 0.7x0.3x0.3
L7 =03 =0.063
”~
START




0.25

Query Sequence

States H H L
E 0x0.2 ) 0.25x0.8x0.08 |
=0 =0.016
M 0x0.9 0.3x0.9x0.3 0.5x0.1x0.08 1
=0 / =0.08 1 =0.04
C | x0.3 - 0.7x0.3.0.3 0.25x0.7x0.081
7 =03 =0.063 =0.014

_
START




0.25

Query Sequence

States H H L
E 0x0.2 ) 0.25x0.8x0.08 |
=0 _7=0016
M 0x0.9 O.3x0.9x0.3/ 0.5x0.1x0.08 1
=0 / =0.08 1 =0.04
C | x0.3 - 0.7x0.3.0.3 0.25x0.7x0.081
7 =03 =0.063 =0.014

_
START




0.25

Query Sequence

States H H L L
0x0.2 0.25x0.8x0.081 | 0.7x0.8x0.016
E -
= 27 =0.016 =0.009
M 0x0.9 O.3x0.9x0.3/ 0.5x0.1x0.081 | 0.3x0.1x0.016
= ) _~7 =0.081 =0.04 =0.0005
C |x0.3 0.7x0.3.0.3 0.25x0.7x0.08| _
=0.3 =0.063 =0.014

_
START




0.25

Query Sequence

States H H L L
E 0x0.2 ) 0.25x0.8x0.081 | 0.7x0.8x0.016
= 7 =006 —[ > =0.009
M 0x0.9 O.3x0.9x0.3/ 0.5x0.1x0.081 | 0.3x0.1x0.016
= ,/ =0.08| =0.04 =0.0005
C | x0.3 0.7x0.3.0.3 0.25x0.7x0.081 )
=0.3 =0.063 =0.014

_
START




0.25

Query Sequence

States H H L L H
0x0.2 0.25x0.8x0.081 | 0.7x0.8x0.016 | 0.7x0.2x0.009
E -
= 7 =0016 —[ > =0.009 =0.00|
XVU. IXU.7XV. DXV XU, IXVU. I XV, IOXU.7XV.
M 0x0.9 0.3x0.9 03/050I 0.081 | 0.3x0.1x0.016 | 0.3x0.9x0.009
= L7 =0.081 =0.04 =0.0005 =0.002
C 1x0.3 0.7x0.3.0.3 0.25x0.7x0.081 ) )
=0.3 =0.063 =0.014

_
START




0.25

Query Sequence

States H H L L H
0x0.2 0.25x0.8x0.081 | 0.7x0.8x0.016 | 0.7x0.2x0.009
E ;
= 7 =0016 — [ =0.009 =0.00|
0x0.9 0.3x0.9x0.37 | 0.5x0.1x0.081 | 0.3x0.1x0.016 [NQ.3x0.9x0.009
M
= |7 =0.081 =0.04 =0.0005 =0.002
C 1x0.3 0.7x0.3.0.3 | 0.25x0.7x0.08I ] ]
=0.3 =0.063 =0.014

_
START




0.25

Query Sequence

States H H L L H
E 0x0.2 ) 0.25x0.8x0.081 | 0.7x0.8x0.016 | 0.7x0.2x0.009
= 7 =0016 — [ =0.009 =0.00|
0x0.9 0.3x0.9x0.37 | 0.5x0.1x0.081 | 0.3x0.1x0.016 [NQ.3x0.9x0.009
M
= |7 =0.081 =0.04 =0.0005 =0.002
C 1x0.3 0.7x0.3.0.3 | 0.25x0.7x0.08I ] ]
/ =0.3 =0.063 =0.014
START C




0.25

Query Sequence

States H H L L H
E 0x0.2 ) 0.25x0.8x0.081 | 0.7x0.8x0.016 | 0.7x0.2x0.009
= 7 =0016 — [ =0.009 =0.00|
M 0x0.9 0.3x0.9x0.3” | 0.5x0.1x0.08| 0.3x0.1x0.016 [N0.3x0.9x0.009
= / =0.08| =0.04 =0.0005 =0.002
C 1x0.3 0.7x0.3.0.3 | 0.25x0.7x0.08I ] ]
L7 =03 =0.063 =0.014
7
START C M




0.25

Query Sequence

States H H L L H
E 0x0.2 ] 0.25x0.8x0.081 | 0.7x0.8x0.016 | 0.7x0.2x0.009
= /=0.0I6 [ =0.009 =0.00
M 0x0.9 0.3x0.9x0.37| 0.5x0.1x0.081 | 0.3x0.1x0.016 [NQ.3x0.9x0.009
= |7 =0.08l =0.04 =0.0005 =0.002
C 0.3 0.7x0.3.0.3 | 0.25x0.7x0.08] ] ]
) =0.3 =0.063 =0.014
Z_
START C M E




0.25

Query Sequence

States H H L L H
E 0x0.2 ] 0.25x0.8x0.081 | 0.7x0.8x0.016 | 0.7x0.2x0.009
= _7=0016 —T” =0.009 ~ | =0.00
M 0x0.9 0.3x0.9x0.3” | 0.5x0.1x0.081 | 0.3x0.1x0.016 [NQ.3x0.9x0.009
= |7 =0.08I =004 =0.0005 =0.002
C 1X0.3 0.7x0.3.0.3 | 0.25x0.7x0.08| _ _
L7 =03 =0.063 =0.014
~_
START C M E E




0.25

Query Sequence

States H H L L H
E 0x0.2 ) 0.25x0.8x0.081 | 0.7x0.8x0.016 | 0.7x0.2x0.009
= 7 =0016 —[ > =0.009 =0.00|
M 0x0.9 0.3x0.9x0.37 | 0.5x0.1x0.081 | 0.3x0.1x0.016 [NQ.3x0.9x0.009
= |7 =0.081 =0.04 =0.0005 =0.002
C 1x0.3 0.7x0.3.0.3 | 0.25x0.7x0.08I ] ]
| =0.3 =0.063 =0.014
7
START C M E E M




0.25

Query Sequence

States H H L L H
E 0x0.2 ) 0.25x0.8x0.081 | 0.7x0.8x0.016 | 0.7x0.2x0.009
= =0.016 =0.009 =0.001
M 0x0.9 0.3x0.9x0.3 0.5x0.1x0.081 | 0.3x0.1x0.016 | 0.3x0.9x0.009
= =0.08 1 =0.04 =0.0005 =0.002
C 0.3 0.7x0.3.0.3 0.25x0.7x0.081 ) )
=0.3 =0.063 =0.014
START C M E E M

Most Probable State Sequence




We have just used the Viterbi algorithm

The Viterbi algorithm finds the most probable “state path” (S*) (i.e. sequence of
hidden states) for generating a given sequence (X= X1, X2,...XN)

S* = argmax P(x,S)

This process is often called decoding because we “decode” the sequence of
symbols to determine the hidden sequence of states

HMMs were original developed in the field of speech recognition, where speech is
“decoded” into words or phonemes to determine the meaning of the utterance

Note that we could have used brute force by calculating P(x|S) for all paths but this
quickly becomes intractable for longer sequences or HMMs with a large number of
states

....................................................................................................................................................................

The Viterbi algorithm is guaranteed to find the most
probable state path given a sequence and an HMM

See Durbin et al. Biological Sequence Analysis




Three key HMM algorithms

e Viterbi algorithm

Given observed sequence x and an HMM M, composed of states S, calculate
the most likely state sequence, S*

»  S*=argmax P(x,S)
e Forward algorithm

Given observed sequence x and an HMM composed of states S, calculate the
probability of the sequence for the HMM, P(x|M)

» P(x)= ) P(x,S)

e Baum-Welch algorithm
Given many observed sequences, estimate the parameters of the HMM
» heuristic expectation maximization method to optimize of a;j and ei(a)




The forward algorithm

Another important question is how well does a given sequence fit the HMM?

To answer this question we must sum over all possible state paths that are
consistent with the sequence in question
(Because we don't know which path emitted the sequence)

The number of paths can quickly become intractable. The forward algorithm is a
simple dynamic programing solution that makes use of the Markov property so
that we don’t have to explicitly enumerate every path.

The forward algorithm basically replaces the maximization step of the Viterbi
algorithm with sums to calculate the probability of the sequence given a HMM.

P(x)=) P(x,S)

See Durbin et al. Biological Sequence Analysis




The Baum-Welch algorithm

The Baum-Welch algorithm is an heuristic optimization algorithm for learning
probabilistic models in problems that involve hidden states

If we know the state path for each training sequence (i.e. no hidden states with
respect to the training sequences), then learning the model parameters is simple
(just like it was for Markov chain models)

e count how often each transition and emission occurs

e normalize to get probabilities

If we don’t know the path for each training sequence, we can use the Baum-
Welch algorithm, an expectation maximization method, which estimates counts
by considering every path weighted by its probability

e start from a given initial guess for the parameters

e perform a calculation which is guaranteed to improve the previous guess

e run until there is little change in parameters between iterations

For sequence profile-HMMs we train from a MSA and hence we can estimate our
probabilities from the observed sequences




Segmentation/boundary detection

Given: A test sequence and a HMM with different sequence classes

Task: Segment the sequence into subsequences, predicting the class of
each subsequence

Question: What is the most probable “path” (sequence of hidden states) for

generating a given sequence from the HMM?
Solution: Use the Viterbi algorithm

Classification/sequence scoring

Given: A test sequence and a set of HMMSs representing different
sequence classes
Task: Determine which HMM/class best explains the sequence

Question: How likely is a given sequence given a HMM?
Solution: Use the Forward algorithm

Learning/parameterization
Given: A model, a set of training sequences
Task: Find model parameters that explain the training sequences

Question: Can we find a high probability model for sequence characterization
Solution: Use the Forward backward algorithm




Segmentation/boundary detection
Question: What is the most probable “path” (sequence of hidden states) for
generating a given sequence from the HMM?
HMMER: hmmalign - align sequences to our HMM

Classification/sequence scoring
Question: How likely is a given sequence given a HMM?
HMMER: hmmsearch - find sequences that match our HMM

Learning/parameterisation
Question: Can we find a high probability model for sequence characterization
HMMER: hmmbuild - setup our HMM parameters




Half time break...

Questions:

For what kinds of motifs are PSSMs not well suited?

What is the Markov property?

In what important ways do HMMs differ Markov chains?

What is the Viterbi algorithm used for?

How does the Forward algorithm differ from the Viterbi algorithm?




............................................................................................................................................................................................................................

éFor what kinds of motifs are PSSMs not well suited?

PSSMs are not well suited to pattern instances containing insertions or
deletions, variable length patterns and those with positional dependencies.

éWhat is the Markov property?

The Markov property states that the conditional probability distribution for the
system at the next step (and in fact at all future steps) depends only on the
current state of the system, and not additionally on the state of the system at
previous steps. |

............................................................................................................................................................................................................................

§In what important ways do HMMs differ Markov chains?

HMMs differ from Markov chains in a number of ways: |
e In HMMs, the sequence of states visited is hidden. Unlike Markov Chains,
there is no longer a one-to-one correspondence between states and 5
output symbols.
In a HMM the same symbol may be emitted by more than one state.
In a HMM a state can emit more than one symbol.

............................................................................................................................................................................................................................

éWhat is the Viterbi algorithm used for?

The Viterbi algorithm is used to find the most probable state path given a
sequence and an HMM




HMM network structure is hand tailored to the problem

No algorithm for the prediction of optimal HMM network structure and probabilities
has yet been able to beat simple hand-built topologies

These topologies are tailored to the problem at hand - exon/intron detection,
transmembrane regions, secondary structure elements, protein families...
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GenScan - gene-prediction HMM

sngl
= Eingle-ex
gene)

’ (intergenic
region)

Reverse strand: mirror reflection of above

Here, each circle or square
represents a functional unit (a state)
of a gene on its forward strand (for
example, Einit is the 5' coding
sequence (CDS) and Eierm is the 3!
CDS, and the arrows represent the
transition probability from one state
to another. The GenScan HMM is
trained by pre-computing the
transition probabilities from a set of
known gene structures.

See: Zhang et al. (2002) Nature
Reviews Genetics 3, 698-709




TMHMM - transmembrane protein topology prediction

cytoplasmic

side non-cytoplasmic side

> short loop —3»{ glob-
non-cyt. [«€— ular

Each box corresponds to one or
more states in the HMM. Cyt.

o
@ £, el gl pgpresents the cytoplasmic side of
| the membrane and non-cyt. the

other side. (b) The detailed structure
(b) of the inside and outside loop
models and helix cap models. (c)
The structure of the model for the
helix core modeling lengths between
5 and 25, which translates to helices
between 15 and 35 when the caps
are included.

cap |5 .
oyt. helix core |5 _

glob- —»»| loop
ular [«€— cyt.

| 2 3 4 5 g 7 g nelixcore 2 23 24 o5 See: Krogh et al. (2001) JMB 305,
567-580




SAMTOOLS - SNP calling in NextGen sequencing data

(e

A L7 7T AN

Application of HMMs in the area of
SNP discovery from NextGen
sequencing data, to greatly reduce
false SNP calls caused by
misalignments around insertions and
deletions (indels). The central
concept is per-Base Alignment
Quality, which accurately measures
the probability of a read base being
wrongly aligned.

See: Li et al. (2011) Bioinformatics
27,1157-1158




HMMER - protein homology detection and alignment

Profile HMM architecture used in
HMMER2, SAM and PFTOOLS
protein homology detection and
alignment packages. Match states
carry position-specific emission
probabilities for scoring residues at
each consensus position. Insert
States emit residues with emission
probabilities identical to a
background distribution. We will
describe this in more detail shortly...

See: Eddy (1998) Bioinformatics 14,
755-763




Building sequence profile-HMMs: Match states

How do the above HMMs relate to profiles? Let’s see how we can use the HMM
framework to build profile HMMs that describe families of related sequences.

In the last lecture, we built a profile for the alignment:

— Pr(v)=0.5
S]. Pr(L)=1 Pr(I)=0.5
S 2 BEGIN— M1 —» M2 —» M3 | M4 F—~END
S3 Pr(E)=0.5
e Pr(K)=0.5
s4 Pr(D)=0.5 Pr(R)=0.25
Pr(E)=0.25

Ignoring the “background” frequencies for now, a profile for this alignment can be
viewed as a simple HMM with one “match” state for each column, where
consecutive match states are separated by transitions of probability 1.

Q. Why is this not a Markov chain?




Building profile-HMMSs: Insert states

Introduce insert states (/j), which will model inserts after the jth column in our
alignment.

sl
S2
s3
s4
queryl

w
m
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N
y
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y

M4 —END

Typically, the output probabilities for insert states are set equal to the background
probabilities. Note that we can have different probabilities for entering different
insert states, and this models the fact that insertions may be less well-tolerated in
certain portions of the alignment.




Building profile-HMMSs: Insert states + affine gaps

For any particular insert state, we may have different transition probabilities for
entering it for the first time vs. staying in the insert state; this models affine gap

penalties.

s1

52 Gy

s3

s4

queryl BEGIN—{ M1 > M2 —| M3 | M4 F—END

query?2




Building profile-HMMSs: Delete states

One could model deletions with additional transitions between match states.
However, arbitrarily long gaps would introduce lots of transitions in the model.
Instead, we will introduce delete states that do not emit any symbols

sl
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s4
query3

BEGIN—
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Building profile-HMMs

Putting it all together we get a complete profile HMM topology with match, insert
and delete states.

sl
S2
s3
s4
queryl
query?2
query3

—END

However we still need to decide how many states our HMM has, what the
transition probabilities are, etc.




Example profile-HMM building

e How do we pick the length of the HMM?

Common heuristic is to include only those sl
columns that have > 50% occupancy s2
s3

e How do we pick emission probabilities for s4
match states? s5
bri (V) = 5/7 s6

bni(F) = 1/7 57

bni(I) = 1/7

How do we pick transition probabilities?
e We let the transition probability of going from state / to state j, aj be equal to:

No. of transitions from state i to state J
No. of transitions from state i to any other state

amm3z (V) = 6/7 No. of matches (=6)
amzp3 (F) 1/7 No. of gaps (=1)
amer2(I) = 0/7 No. of insertions (=0)
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Side note: Weighting the training sequences

If there is a high degree of redundancy in our initial MSA (i.e. it contains a large
group of very closely related sequences and a small number of more distantly
related sequences) the resulting HMM will over represent the similar sequences
and adversely effect our ability to detect distantly related sequences when
searching databases

Sequences weighting attempts to compensate for this sequence sampling bias
by differentially weighting sequences to reduce redundancy prior to model building

By default HMMER uses a sequence clustering tree as a guide to weight each
sequence by its distance to other sequences. This approach will effectively down-
weight the influence of redundant sequences.

A number of other approaches have been developed (Voronoi algorithm, maximum
entropy, etc.)

See: Karchin et al. (1998) Bioinformatics 14, 772-778




Side note: Pseudocounts and Dirichlet distributions

Unfortunately, for alignments containing a small number of sequences the
observed counts may not be representative of the family as a whole.

In such cases we must adjust the probabilities to account for our under-sampling
(i.e. unobserved residues)

One common approach is to add pseudocounts to the observed counts so that
no zero probabilities can occur.

Simplest approach is to just add one to all counts. More accurate adjustments
consider prior knowledge about the behavior of sequence families adjusting
counts according to pre-tabulated Dirichlet distributions - which are rather like
protein comparison matrixes used in profile methods

Such information is often called prior information, indicating that it is known
before any sequence data is seen

See: Durbin et al. “Biological Sequence Analysis”




Generating multiple sequence alignments

Large MSAs can be generated very quickly by using the Viterbi algorithm to find
the most likely path through the HMM for a set of unaligned sequences

This is the basis of the PFAM database which uses the HMMER software package
Namely, HAMMER’s hmmalign from the results of hmmsearch

MSA produced by HMMs are not true MSAs in the way that those produced by
ClustalW are. ClustalW compares every sequence to every other sequence,
whereas HMM aligning compares every sequence to the model independently so
that the alignment between sequences is by proxy. Adding new sequences to the
ClustalW alignment will add new information which may alter the alignment of
existing sequences; adding new sequences to the HMM alignment never changes
the alignment of any sequences relative to each other.

As an alternative to HMMER, you can use the Sequence Alignment and
Modeling Software System (SAM) :

http://compbio.soe.ucsc.edu/sam.html




HMM sequence searching performance

on shuffled target sequences on real target sequences
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Recent speed benchmarks indicate that HMMERS is approaching BLAST speed

Each point represents a speed measurement for one search with one query against
target sequences. Both axes are logarithmic, for speed in millions of dynamic
programming cells per second (Mc/s) on the y-axis and query length on the x-axis.

See: Eddy (2011) PLoS Comp Biol 7(10): e1002195




HMM sequence searching performance...
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However HMMERS has a much higher search sensitivity and specificity

In each benchmark, true positive subsequences have been selected to be no more than
25% identical to any sequence in the query alignment ... (see paper for details).

See: Eddy (2011) PLoS Comp Biol 7(10): e1002195




HMM limitations

HMMs are linear models and are thus unable to capture higher order
correlations among positions (e.g. distant cysteins in a disulfide bridge, RNA
secondary structure pairs, etc).

Another flaw of HMMs lies at the very heart of the mathematical theory behind
these models. Namely, that the probability of a sequence can be found from the
product of the probabilities of its individual residues.

This claim is only valid if the probability of a residue is independent of the
probabilities of its neighbors. In biology, there are frequently strong dependencies
between these probabilities (e.g. hydrophobic residues clustering at the core of
protein domains).

These biological realities have motivated research into new kinds of statistical
models. These include hybrids of HMMs and neural nets, dynamic Bayesian nets,
factorial HMMs, Boltzmann trees and stochastic context-free grammars.

See: Durbin et al. “Biological Sequence Analysis”




PFAM: Protein Family Database of Profile HMMs

Comprehensive compilation of both multiple sequence alignments and profile
HMMs of protein families.

http://pfam.sanger.ac.uk/

PFAM consists of two databases:

e Pfam-A is a manually curated collection of protein families in the form of
multiple sequence alignments and profile HMMs. HMMER software is used to
perform searches.

e Pfam-B contains additional protein sequences that are automatically aligned.
Pfam-B serves as a useful supplement that makes the database more
comprehensive.

e Pfam-A also contains higher-level groupings of related families, known as clans




Pfam: Home page
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Pfam 25.0 (March 2011, 12273 families)

The Pfam database is a large collection of protein families, each represented by multiple sequence
alignments and hidden Markov models (HMMs). More...

QUICK LINKS YOU CAN FIND DATA IN PFAM IN VARIOUS WAYS...
SEQUENCE SEARCH  Analyze your protein sequence for Pfam matches
VIEW A PFAM FAMILY  View Pfam family annotation and alignments
VIEW A CLAN See groups of related families
VIEW A SEQUENCE Look at the domain organisation of a protein sequence
VIEW A STRUCTURE  Find the domains on a PDB structure
KEYWORD SEARCH Query Pfam by keywords
JUMP TO  [enter any accession or ID | (&) G0

Citing Pfam

Enter any type of accession or ID to jump to the page for a Pfam family or
clan, UniProt sequence, PDB structure, etc.

Or view the help pages for more information

Mirrors

If you find Pfam useful, please consider citing the reference
that describes this work:

Ihe Pfam protein families databasec?: R.D. Finn, J. Mistry, J.
Tate, P. Coggill, A. Heger, J.E. Pollington, O.L. Gavin, P.
Gunesekaran, G. Ceric, K. Forslund, L. Holm, E.L.
Sonnhammer, S.R. Eddy, A. Bateman

Nucleic Acids Research (2010) Database Issue 38:D211-222

The following are official Pfam mirror
sites:

8 WTSI, UKc?
s SBC, Swedenc?
® JFRC, USA®®
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The Pfam group coordinates the annotation of Pfam families in Wikipediac?. This family is described by a Wikipedia entry entitled
Trees "Kinesint?". More...

Curation & models . . R ——
Kinesin
Species

A kinesin is a protein belonging to a class of motor proteins found in eukaryotic cells. Kinesins
move along microtubule filaments, and are powered by the hydrolysis of ATP (thus kinesins are
Structures ATPases). The active movement of kinesins supports several cellular functions including mitosis,
meiosis and transport of cellular cargo, such as in axonal transport. Most kinesins walk towards
the plus end of a microtubule, which, in most cells, entails transporting cargo from the centre
of the cell towards the periphery. This form of transport is known as anterograde transport.

Interactions

Jump to... i
[emerorace 1)

Contents [show]

1 Structure
1.1 Overall structure
1.2 Kinesin motor domain Animation of kinesin walking on a ©-
2 Cargo transport microtubule
3 Direction of motion
4 Proposed mechanisms of movement
5 Theoretical Modeling of Kinesin
6 Kinesin and mitosis
7 Family members
8 See also
9 References
10 External links
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Clans There are 3185 sequences with the following architecture: Kinesin
Alignments CENPE HUMAN [Homo sapiens (Human)] Centromere-associated protein E (2701 residues)
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HMM logo

Show all sequences with this architecture.

Trees There are 139 sequences with the following architecture: Kinesin x 2

Curation & models | CIN8 YEAST [Saccharomyces cerevisiae (Baker's yeast)] Kinesin-like protein CIN8 (1000 residues)

Species e Kinesing - Kinesing - d

Show all sequences with this architecture.

Interactions
There are 56 sequences with the following architecture: Kinesin, FHA
Structures KIF14 HUMAN [Homo sapiens (Human)] Kinesin-like protein KIF14 (1648 residues)

o Kinesin s JFHAY
Jump to... i Show all sequences with this architecture.

[enter ID/acc @) There are 54 sequences with the following architecture: CH, Kinesin
0Q9SS42 ARATH [Arabidopsis thaliana (Mouse-ear cress)] Kinesin-like protein (897 residues)

i i
Show all sequences with this architecture.

There are 54 sequences with the following architecture: Kinesin, DUF3490
0OBLNZ2 ARATH [Arabidopsis thaliana (Mouse-ear cress)] Kinesin-like protein (938 residues)

A Kinesin - = DUF3490
Show all sequences with this architecture.

There are 44 sequences with the following architecture: Kinesin, FHA, KIF1B, DUF3694, PH
KIF1A HUMAN [Homo sapiens (Human)] Kinesin-like protein KIF1A (1690 residues)

AR in G JFHAY e — DUF3694 CPH

Show all sequences with this architecture.
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There are various ways to view or download the sequence alignments that we store. You can use a sequence viewer to look at either the
seed or full alignment for the family, or you can look at a plain text version of the sequence in a variety of different formats. More...

View options

JF
Align & @Seed(B?) O Full (4150)‘
(_) NCBI (6110) ' Metagenomics (525)
Viewer: HTML s |

| View |

Formatting options

Alignment: (¢) Seed (87) ) Full (4150)
Format: | Selex s |
Order: (¢) Tree ) Alphabetical

Sequence: (*) Inserts lower case ) All upper case
Gaps: | Gaps as "." or "-" (mixed) +
Download/view: (*) Download

| Generate |

) View

Download options

Very large alignments can often cause problems for the formatting tool above. If you find that downloading or viewing a large alignment is
problematic, you can also download a gzipcf-compressed, Stockholm-format file containing the seed or full alignment for this family.

You can also download a FASTA format file containing the full-length sequences for all sequences in the full alignment.

The main seed and full alignments are generated using sequences from the UniProt sequence database. However, we also generate
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Family: Kinesin (PF00225)

Summary

Domain
organisation

Clans
Alignments

HOME | SEARCH | BROWSE | FTP | HELP | ABOUT
= sidd
126 architectures 4150 seguences 6 Interactions

= >y
248 species 114 'g‘.nctures

Q O

Pfam

[ keyword search I@

v

[HMM logo

Trees

Curation & models
Species
Interactions
Structures

Jump to... i
[emter o7ace )

HMM logos is one way of visualising profile HMMs. Logos provide a quick overview of the properties of an HMM in a graphical form. You can

see a more detailed description of HMM logos and find out how you can interpret them herec?. More...
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search campus [keyword search |

Family: Kinesin (PF00225) > i = -
126 architectures 4150 seguences 6 Interactions 248 species 114 structures
Summary Curation and family details
Domain
organisation This section shows the detailed information about the Pfam family. You can see the definitions of many of the terms in this section in the
Cla glossary and a fuller explanation of the scoring system that we use in the scores section of the help pages.
ns
Alignments Curation i
HMM logo Seed source: Prosite
Previous IDs: kinesin;
Trees .
. Type: Domain
|§ﬂﬂ0" & models Author: Bateman A, Finn RD
Species Number in seed: 87
Interactions Number in full: 4150
Average length of the 298.60 aa
Structures domain:
Average identity of full 31 %
Jump to... i alignment:
Average coverage of 34.30 %
@ the sequence by the
domain:
HMM information i
HMM build commands: build method: hmmbuild -o /dev/null HMM SEED
search method: hmmsearch -Z 11384036 -E 1000 --cpu 4 HMM pfamseq
Model details: Parameter Sequence Domain
Gathering cut-off 225 7
Trusted cut-off 225 22.5
Noise cut-off 22.4 22.4
Model length: 333
Family (HMM) version: 17
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Pfam: Family: Kinesin (PF00225)
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HMM logo
Trees
Curation & models

Lﬁcles

Interactions

Structures

Jump to... i

[emeriorce ] E

select sub-trees and view sequence alignments. More...

Kinetoplastida
Trypanosomatidae
Trypanosoma

Trypanosoma cruzi [species

98 sequences
1 species

< Weight segments by...

(®) number of sequences
() number of species

Change the size of the sunburst
Small -

Trypanosoma cruzi
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Pfam: Family: Kinesin (PF00225)
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Family: Kinesin (PF00225) = i A= -
CLoading page components (1 remaining)... 126 architectures 4150 seguences 6 Interactions 248 species 114 structures

Summary

Domain
organisation

Clans

Alignments

HMM logo

Trees

Curation & models

>

Structures

Jump to... i

enter ID/acc @

There are 6 interactions for this family. More...

Tubulin T lin
Tubulin_C

Kinesin

Tubulin inesin

Questions or comments: Pfam@janelia.hhmi.org
Howard Hughes Medical Institute
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Family: Kinesin (PF00225) = fidid &= -

126 architectures 4150 seguences 6 Interactions 248 _s_;;édes 114 structures
>

Domain
organisation For those sequences which have a structure in the Protein DataBankr?, we use the mapping between UniProtc?, PDB and Pfam coordinate
systems from the PDBer? group, to allow us to map Pfam domains onto UniProt sequences and three-dimensional protein structures. The
Clans table below shows the structures on which the Kinesin domain has been found.
Alignments PDB
HMM logo UniProt entry ::lm-l“" PI?,. chain m"’. View
ID
Trees

A 11 - 335 Jmol AstexViewer SPICE ¥

ABBKD1 GIALA 11-335 2vv
Curation& models | ————————— <Vva 11 - 335 Jmol AstexViewer SPICE i

Species 12 - 329 Imol AstexViewer SPICE if
CENPE_HUMAN 12-329  1tSc )
Interactions 12 - 329 Jmol AstexViewer SPICE 7
1ot 392 - 723 Imol AstexViewer SPICE ?
[Structures 1f9u 392 - 723 Jmol AstexViewer SPICE &
392 - 723 1f9v 392 - 723 )mol AstexViewer SPICE
KAR3 YEAST .

Jump to... i 392 - 723 Jmol AstexViewer SPICE &

1f9w
[enter ID/acc @) — 392 - 723 Jmol AstexViewer SPICE i
3kar 392 - 723 JImol AstexViewer SPICE i#

11 - 352 Jmol AstexViewer SPICE ¥
11 - 352 Jmol AstexViewer SPICE ¥
11 - 352 Jmol AstexViewer SPICE ¥
24 - 359 Imol AstexViewer SPICE i?

KI138 HUMAN 11 -352 3gbj

24 - 359 Jmol AstexViewer SPICEi?
100b 24 - 359 Jmol AstexViewer SPICE i?

24 - 359 )mol AstexViewer SPICEc?

24 - 359 Imol AstexViewer SPICE r?
1x88

24 - 359 Imol AstexViewer SPICE #
24 - 359 Imol AstexViewer SPICE ri#

> ® >0 > ®>NO0> > 0> > > >0 >0




Pfam: Jmol

+ M http://pfam.janelia.org/structure/viewer?viewer=jmol&id=3bfn E3 ¢ | (Q~ Google (3]

Pfam: Family: Kinesin (PF00225) l Pfam: Jmol +

Isanger

PDB entry 3bfn

Jmol
PDB UniProt
Pfam fami
Chain Start End iD Start End ly
A 49 368 KIF22 HUMAN 49 368 Kinesin (_PF00225)
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5 HMMER

biosequence analysis using profile hidden Markov models

Search Results About

Software Help

HHMI
Janelia farm

arch campus

HMMER3: a new generation of sequence homology search software

HMMER is used for searching sequence databases for homologs of protein sequences, and for making
protein sequence alignments. It implements methods using probabilistic models called profile hidden
Markov models (profile HMMs).

Compared to BLAST, FASTA, and other sequence alignment and database search tools based on older
scoring methodology, HMMER aims to be significantly more accurate and more able to detect remote
homologs because of the strength of its underlying mathematical models. In the past, this strength
came at significant computational expense, but in the new HMMER3 project, HMMER is now essentially
as fast as BLAST.

As part of this evolution in the HMMER software, we are committed to making the software available to
as many scientists as possible. Earlier releases of HMMER were restricted to command line use. To
make the software more accessible to the wide scientific community, we now provide servers that
allow sequence searches to be performed interactively via the Web.

The current version is HMMER 3.0 (28 March 2010) and can be downloaded from the software section
of the site. Previous versions of the HMMER software can be obtained from the archive section.

If you have used the HMMER website, please consider citing the following reference that describes this
work:

HMMER web server: interactive sequence similarity searching@
R.D. Finn, J. Clements, S.R. Eddy
Nucleic Acids Research (2011) Web Server Issue 39:W29-W37. PDFE

Comments or questions on the site? Send a mail to hmmer@janelia.hhmi.org
Howard Hughes Medical Institute

M Follow €hmm3r

Download HMMER

Get the latest version

v3.0
Release notes (28 March 2010)

Alternative Download Options

Source

Search

Perform an interactive search now.

Search




HMMER 2
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Home Search Results Software Help  About
HMMER phmmer hmmscan hmmsearch

protein sequence vs protein sequence database Advanced

Paste in your sequence or use the example

>sp|Q14807|KIF22_HUMAN
MAACGSTQQRRREMAAASAAAISCAGRCRLSKICATRRPPPARVRVAVRLRPFVDGTAGA
SDPPCVRCMDSCSLEIANWRNHQETLKYQFDAFYGERSTQQDIYAGSVQPILRHLLEGQON
ASVLAYGPTGAGKTHTMLGSPEQPGVIPRALMDLLQLTREECAEGRPWALSVTMSYLEIY
QEXVLDLLDPASGDLVIREDCRGNILIPGLSQKPISSFADFERHFLPASRNRTVGATRLN
QRSSRSHAVLLVKVDQRERLAPFRQREGKLYLIDLAGSEDNRRTGNKGLRLKESGAINTS
LFVLCKVVDALNQGLPRVPYRDSKLTRLLQDSLCGSAHSILIANIAPERRFYLDTVSALN
FAARSKEVINRPFTNESLQPHALGPVKLSQKELLGPPEAKRARGPEEEEIGSPEPMAAPA
SASQKLSPLQKLSSMDPAMLERLLSLDRLLASQGSQCAPLLSTPKRERMVLMKTVEEKDL
EIERLKTKQKELEAKMLAQKAEEKENHCPTMLRPLSHRTVTGAKPLKKAVVMPLQLIQEQ
AASPNAEIHILKNKGRKRKLESLDALEPEEKAEDCWELQISPELLAHGRQKILDLLNEGS

Comments or questions on the site? Send a mail to hmmer@janelia.hhmi.org
Howard Hughes Medical Institute

M Follow @hmm3r




HMMER

< 2 p http://hmmer.janeIia.org/results/score/9924F9AC-FEBS-11E0-A304—280C998A791 3 ¢ | (Q~ Google Q O

HMMER

biosequence analysis using profile hidden Markov models

Home  Search Results Software Help  About

m Taxonomy ] Domain I Download /‘l

HHMI —
janelia farm

Search Again

Pfam Domains

I W—

Show hit details

Distribution of Significant Hits @

Eukaryota ® Archaesa ® Viruses * Unclassified Sequences

Query Matches (5100)

Target

123979736& kinesin family member 22

6453818&  kinesin-like protein KIF22

305846158 Homo sapiens kinesin-like 4

123994513&" kinesin family member 22

189053342EF unnamed protein product

62898423E' kinesin family member 22 variant

3328456436 PREDICTED: kinesin family member 22 isoform 2
750620218 RecName: Full=Kinesin-like protein KIF22
332266048EF PREDICTED: kinesin-like protein KIF22-like isoform 1
2972837486 PREDICTED: hypothetical protein LOC706401 isoform 3
2962199418 PREDICTED: LOW QUALITY PROTEIN: kinesin-like protein KIF22-like
29619645688 PREDICTED: kinesin-like protein KIF22-like
3352844078 PREDICTED: kinesin-like protein KIF22-like
2210461668 unnamed protein product

VI1NACAQOF sinnamad neatain neandiict

Description

more
significant

®  Other Sequences

Page ; of 51 Next » Last »

Customize

Species E-value Alignments
(show all)

synthetic construct & 0.0e+00 show
Homo sapiens Ef 0.0e+00 show
synthetic construct& 0.0e+00 show
synthetic construct& 0.0e+00 show
Homo sapiensE? 0.0e+00 show
Homo sapiens & 0.0e+00 show
Pan troglodytes & 0.0e+00 show
Pongo abelii&f 0.0e+00 show
Nomascus leucogenysi 0.0e+00 show
Macaca mulattag? 0.0e+00 show
Callithrix jacchus & 0.0e+00 show
Callithrix jacchus & 0.0e+00 show
Sus scrofa & 0.0e+00 show
Homo sapiensE? 0.0e+00 show

Mamn caniance P73 N Naa NN chmnu




HMMER

4 > | [+ http://hmmer.janelia.org/results/domain/9924F9AC-FEBS-11E0-A304-ZBOC998A79 = C] 'Q~ Google

(Score | Taxonomy m Download)

Query
S — -

Jump to the exact match for your query architecture

First « Previous Page|) of 7 Next » Last »

Domain Architectures @

3624 with domain architecture: Kinesin, example: 1486855506 View Scores
SEQUENCES
Show Al (S W
126 with domain architecture: Kinesin, FHA, example:157125836E# View Scores
SEQUENCES
Show All — S W— &y
SEQI-UQNI-CE with domain architecture: Kinesin, Kinesin, example:2960883256 View Scores
Show All — (TTSR— T W—,
sque?«u with domain architecture: Kinesin, FHA, KIF1B, DUF3694, PH, example: 118101106 View Scores
Show All ) ) - ourssorm -
69 with domain architecture: HHH_3, example:337289058E¢ View Scores
SEQUENCES R
Show All —_-—,
62 with domain architecture: CH, Kinesin, example:224061629& View Scores
SEQUENCES .
Show All ’E
Wg?ﬁ Bl Exact match with query architecture: Kinesin, HHH_3, example:3322660484 View Scores
Show Al (SEGEG—TS W— —

—
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L

Home Search Results Software Help  About

(Score I Taxonomy l Domain m

e Job: 9924F9AC-FEB5-11E0-A304-2B0C998A7913

e Started: 2011-10-24 23:01:15

¢ Algorithm: phmmer

« HMMER Options: -E 1 --domE 1 --incE 0.01 --incdomE 0.03 --mx BLOSUM62 --pextend 0.4 --popen 0.02 --seqdb nr
¥ Format

FASTA

Download the significant hits from your
search as a gzipped FASTA file.

Full length FASTA

A gzipped file containing the full length
sequences for significant search hits.

- I
i oo

Aligned FASTA E STOCKHOLM E
A gzipped file containing aligned A Download an alignment of significant hits A
significant search hits in FASTA format. "i‘ as a gzipped STOCKHOLM file. Mi‘\
Text XML

A plain text file containing the hit TXT An XML file formated for machine

alignments and scores. parssing of the data.

JSON HMM
All the results information encoded as a _
single json string. rofile HMM downloads are

Download BZED




SUPERFAMILY database of structural and functional protein annotations for all completely sequenced organisms

< + S http://supfam.cs.bris.ac.uk/SUPERFAMILY/ ¢ | (Q~ Google ()

Superfamily .

HMM library and genome assignments server

| Search SUPERFAMILY |

Home

SEARCH
Keyword search
n rch

BROWSE
Organisms
Taxonomy
... Statistics
SCOP
Hierarchy
Ontologies

GO
EC
Phenotype

TOOLS

Compare genomes
Phylogenetic trees
Web services
Downloads

ABOUT
ription
Publications
Documentation

SUPERFAMILY Description

SUPERFAMILY is a database of structural and functional annotation for all proteins and genomes.

The SUPERFAMILY annotation is based on a collection of hidden Markov models, which represent
structural protein domains at the SCOP superfamily level. A superfamily groups together domains
which have an evolutionary relationship. The annotation is produced by scanning protein sequences
from over 1,700 completely sequenced genomes against the hidden Markov models.

For each protein you can:
»  Submit sequences for SCOP classification
» View domain organisation, sequence alignments and protein sequence details

For each genome you can:

» Examine superfamily assignments, phylogenetic trees, domain organisation lists and networks
» Check for over- and under-represented superfamilies within a genome

For each superfamily you can:

» Inspect SCOP classification, functional annotation, Gene Ontology annotation, InterPro abstract
and genome assignments
» Explore taxonomic distribution of a superfamily across the tree of life

All annotation, models and the database dump are freely available for download to everyone.
Description cont.

Jump to [ SUPERFAMILY description - Recent news |

Major Features




Keyword Search Results: kinesin

“ + S http://supfam.cs.bris.ac.uk/SUPERFAMILY /cgi-bin/search.cgi ¢ | (Q~ Google

Superfamily .

HMM library and genome assignments server

©

| Search SUPERFAMILY |
Home > Keyword search > kinesin
SEARCH Keyword Search Results
Keyword search
n rch Another Search:
BROWSE kinesin " Search SUPERFAMILY
Organisms
Taxonomy
---- Statistics Results 1-3 of 3 for kinesin.
SCOP
Hierarchy 1. .
Ontologies SCOP classificatio
- GO Class : Alpha and beta proteins (a/b)
EC Fold : P- inin i i h
Phenotype Superfamily : P-loop containing nucleoside triphosphate hydrolases
Family : Motor proteins
TOOLS Protein : Kinesin
Compare genomes Protein : Kinesin motor Ncd (non-claret disjunctional)
Phylogenetic trees Protein : Kinesin heavy chain-like protein
Web services
Downloads
Superfamily Family
ABOUT Alignments Alignments
ription Genome assignments Genome assignments
Pup catens Taxonomic distribution Taxonomic distribution
Documentation Domain combinations




+ 5http://supfam.cs.bris.ac.uk/SUPERFAMILY/cgi-bin/scop.cgi?sunid=52641 ¢ | [Q~ Google (3}
Keyword Search Results: kinesin Motor proteins family +
Supeijamz[y
HMM library and genome assignments server
| Search SUPERFAMILY |
Home > SCOP hierarchy > Motor proteins family
SEARCH ’
enord smacch (| S e | Dle:
Assignments Distribution
Sequence search assification ssignments nmen stribution
BROWSE Motor proteins family
Organisms SCOP classification
Loxonomy Root: SCOP hierarchy in SUPERFAMILY [S€%P 0] (11)
Statistics Class: Alpha and beta proteins (a/b) [SC©P_51349] (147)
:SCOI-> Fold: P-loop containing nucleoside triphosphate hydrolases [3€0f _52539]
o m\f Superfamily: P-loop containing nucleoside triphosphate hydrolases [€©f_52540] (24)
Ontologies Family: Motor proteins [3C0f 52641] (4)
- GO
- EC . _—
: Family statistics
... Phenotype G (351)|Uni t 2011 09/PDB chains (SCOP 1.75)
TOOLS Domains 15,002 10,025 46
Compare genomes |Proteins 14,811 9,877 46
Phylogenetic trees
Web services
Downloads Gene Ontology (high-coverage)
ABOUT (show details)
Description GO term FDR (all) |SDFO lev
Publication Biological Process (BP) |multicellular organismal process 0 Least Inf
Documentation Biological Process (BP) |biological requlation 0.03575 |Least Inf




P-loop containing nucleoside triphosphate hydrolases superfamily

+ S http://supfam.cs.bris.ac.uk/SUPERFAMILY/cgi-bin/scop.cgi?sunid=52540 ¢ | [Q~ Google
Keyword Search Results: kinesin ‘ P-loop containing nucleoside trip +
SEARCH :
Keyword search  Structural Genome_ Sequence_ Domain_ Taxonomic_
Classification Assignments Alignments Combinations Distribution
Sequence search

BROWSE
Organisms
Taxonomy
... Statistics
SCOP

: Hierarchy
Ontologies
- GO

... EC

- Phenotype

TOOLS
Compare genomes
Phylogenetic trees
Web services
Downloads

ABOUT
Description
Publications
Documentation

HELP

User support
Contact us

Email list
Sitemap

P-loop containing nucleoside triphosphate hydrolases superfamily

SCOP classification
Root:

Class:

Fold:
Superfamily:
Families:

SCOP hierarchy in SUPERFAMILY [S€GP 0] (11)
Alpha an rotein [5€0P_51349] (147)

P-loop containing nucleoside triphosphate hydrolases [3¢GP_52539]

P-loop containing nucleoside triphosphate hydrolases [5C0f _52540] (24)
Nucleotide and nucleoside kinases [S€©f_52541] (20)

Shikimate kinase (AroK) [3€0f_52566]
Chloramphenicol phosphotransferase [3CGf_525
Gluconate kinase [3€©f_75195]

Plasmid maintenance system epsilon/zeta, toxin zeta subunit [SC0f_823
Adenosine-5'phosphosulfate kinase (APS kinase) [3€GFP_52572]

ATP sulfurylase C-terminal domain [3C0f 64011]

PAPS sulfotransferase [$C€©f _52575] (14)
Phosphoribulokinase/pantothenate kinase [3€©f_52584] (5)

69]

95]

6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase, kinase domain [$€Gf 525

G proteins [3C0f _52592] (78)
Motor proteins [3C0f_52641] (4)
Nitrogenase iron protein-like [C€©f _52652] (15)

RecA protein-like (ATPase-domain) [$€GP _52670] (17)
Bacterial cell division inhibitor SulA [3CGP _89678]

ABC transporter ATPase domain-like [C QP _52686] (23)
Tandem AAA-ATPase domain [3€0f_81268] (23)
Extended AAA-ATPase domain [3C0f_81269] (28)

RNA helicase [3C0f_52724] (3)

Helicase-like "domain" of reverse gyrase [3C0Ff_69496]
DNA helicase UvsW [5C0f _102396]
YjeE-like [5€GP_75213]

Type II thymidine kinase [3€0FP _117558]

89]
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