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Background

Bio3D! is an R package that provides interactive tools for structural bioinformatics . The primary
focus of Bio3D is the analysis of biomolecular structure, sequence and simulation data (Grant et al.
2006).

Normal mode analysis (NMA) is one of the major simulation techniques used to probe large-scale
motions in biomolecules. Typical application is for the prediction of functional motions in proteins.
Version 2.0 of the Bio3D package now includes extensive NMA facilities (Skjaerven et al. 2015).
These include a unique collection of multiple elastic network model (ENM) force-fields (see Example
1 below), automated ensemble analysis methods (Example 2), variance weighted NMA (Example
3), and NMA with user-defined force fields (Example 4). Here we demonstrate the use of these
new features with working code that comprise complete executable examples?.

Requirements

Detailed instructions for obtaining and installing the Bio3D package on various platforms can be
found in the Installing Bio3D Vignette available both on-line and from within the Bio3D package.
In addition to Bio3D the MUSCLE multiple sequence alignment program (available from the muscle

home page) must be installed on your system and in the search path for executables. Please see the
installation vignette for further details.

About this document

This vignette was generated using Bio3D version 2.3.0.

1 Example 1: Basic Normal Mode Analysis

1.1 Example 1A: Normal mode calculation

Normal mode analysis (NMA) of a single protein structure can be carried out by providing a PDB
object to the function nma(). In the code below we first load the Bio3D package and then download
an example structure of hen egg white lysozyme (PDB id Ihel) with the function read.pdb().
Finally the function nma() is used perform the normal mode calculation:

library(bio3d)
pdb <- read.pdb("1lhel")

##  Note: Accessing on-line PDB file

!The latest version of the package, full documentation and further vignettes (including detailed installation
instructions) can be obtained from the main Bio3D website: http://thegrantlab.org/bio3d/.
2This vignette contains executable examples, see help(vignette) for further details.


http://thegrantlab.org/bio3d/tutorials
http://www.drive5.com/muscle/
http://www.drive5.com/muscle/
http://thegrantlab.org/bio3d/

modes <- nma(pdb)

## Building Hessian... Done in 0.04 seconds.
## Diagonalizing Hessian... Done in 0.152 seconds.

A short summary of the returned nma object contained within the new variable modes can be
obtained by simply calling the function print():

print (modes)

#i#

## Call:

## nma.pdb(pdb = pdb)

##

## Class:

## VibrationalModes (nma)
##

## Number of modes:
#t# 387 (6 trivial)

##

## Frequencies:

## Mode 7: 0.018

## Mode 8: 0.019

## Mode 9: 0.024

## Mode 10: 0.025

## Mode 11: 0.028

## Mode 12: 0.029

##

## + attr: modes, frequencies, force.constants, fluctuations,
## U, L, xyz, mass, temp, triv.modes, natoms, call

This reveals the function call resulting in the nma object along with the total number of stored
normal modes. For PDB id 1hel there are 129 amino acid residues, and thus 387 modes (3% 129 = 387)
in this object. The first six modes are so-called trivial modes with zero frequency and correspond to
rigid-body rotation and translation. The frequency of the next six lowest-frequency modes is also
printed.

Note that the returned nma object consists of a number of attributes listed on the +attr: line.
These attributes contain the detailed results of the calculation and their complete description can be
found on the nma() functions help page accessible with the command: help(nma). To get a quick
overview of the results one can simply call the plot() function on the returned nma object. This
will produce a summary plot of (1) the eigenvalues, (2) the mode frequencies, and (3) the atomic
fluctuations (See Figure 1).

plot(modes, sse=pdb)
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Figure 1: Summary plot of NMA results for hen egg white lysozyme (PDB id 1hel). The optional
sse=pdb argument provided to plot.nma() results in a secondary structure schematic being added
to the top and bottom margins of the fluctuation plot (helices black and strands gray). Note the
larger fluctuations predicted for loop regions.



1.2 Example 1B: Specifying a force field

The main Bio3D normal mode analysis function, nma(), requires a set of coordinates, as obtained
from the read.pdb() function, and the specification of a force field describing the interactions
between constituent atoms. By default the calpha force field originally developed by Konrad Hinsen
is utilized (Hinsen et al. 2000). This employs a spring force constant differentiating between
nearest-neighbor pairs along the backbone and all other pairs. The force constant function was
parameterized by fitting to a local minimum of a crambin model using the AMBER94 force field.
However, a number of additional force fields are also available, as well as functionality for providing
customized force constant functions. Full details of available force fields can be obtained with the
command help(load.enmff). With the code below we briefly demonstrate their usage along with
a simple comparison of the modes obtained from two of the most commonly used force fields:

help(load.enmff)

# Calculate modes with various force fields
modes.a <- nma(pdb, ff="calpha')

modes.b <- nma(pdb, ff="anm"

modes.c <- nma(pdb, ff="pfanm")

modes.d <- nma(pdb, ff="reach")

modes.e <- nma(pdb, ff="sdenm")

# Root mean square inner product (RMSIP)
r <- rmsip(modes.a, modes.b)

plot(r, xlab="ANM", ylab="C-alpha FF")

1.3 Example 1C: Normal mode analysis of the GroEL subunit

Bio3D includes a number of functions for analyzing and visualizing the normal modes. In the
example below we illustrate this functionality on the GroEL subunit. GroEL is a multimeric protein
consisting of 14 identical subunits organized in three distinct domains inter-connected by two hinge
regions facilitating large conformational changes.

We will investigate the normal modes through (1) mode visualization to illustrate the nature of the
motions; (2) cross-correlation analysis to determine correlated regions; (3) deformation analysis
to measure the local flexibility of the structure; (4) overlap analysis to determine which modes
contribute to a given conformational change; and (5) domain analysis to identify regions of the
protein moving as rigid parts.

1.3.1 Calculate the normal modes

In the code below we download a structure of GroEL (PDB-id Isz4) and use atom.select() to
select one of the 14 subunits prior to the call to nma():
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Figure 2: Analysis of mode similarity between modes obtained from the ANM and calpha force fields
by calculating mode overlap and root mean square inner product (RMSIP) with function rmsip().
An RMSIP value of I depicts identical directionality of the two mode subspaces.



# Download PDB, calcualte normal modes of the open subuntt
pdb.full <- read.pdb("1sx4")

pdb.open  <- trim.pdb(pdb.full, atom.select(pdb.full, chain="A"))
modes <- nma(pdb.open)

1.3.2 Mode visualization

With Bio3D you can visualize the normal modes either by generating a trajectory file which can
be loaded into a molecular viewer program (e.g. VMD or PyMOL), or through a vector field
representation in PyMOL. Both functions, mktrj.nma() and pymol.modes(), takes an nma
object as input in addition to the mode index specifying which mode to visualize:

# Make a PDB trajectory
mktrj(modes, mode=7)

# Vector field representation (see Figure 3.)
pymol (modes, mode=7)
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Figure 3: Visualization of the first non-trivial mode of the GroEL subunit. Visualization is provided
through a trajectory file (left), or vector field representation (right).

1.3.3 Cross-correlation analysis

Function dccm.nma() calculates the cross-correlation matrix of the nma object. Function
plot.dccm() will draw a correlation map, and 3D visualization of correlations is provided through
function pymol.dccm():



# Calculate the cross—-correlation matriz
cm <- dccm(modes)

# Plot a correlation map with plot.dcem(cm)
plot(cm, sse=pdb.open, contour=F, col.regions=bwr.colors(20), at=seq(-1,1,0.1) )
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Figure 4: Correlation map revealing correlated and anti-correlated regions in the protein structure.

# View the correlations in the structure (see Figure 5.)
pymol(cm, pdb.open, type="launch")

1.3.4 Fluctuation and Deformation analysis

Deformation analysis provides a measure for the amount of local flexibility in the protein structure -
i.e. atomic motion relative to neighboring atoms. It differs from fluctuations (e.g. RMSF values)



Figure 5: Correlated (left) and anti-correlated (right) residues depicted with red and blue lines,
respectively. The figures demonstrate the output of function pymol.dccm().

which provide amplitudes of the absolute atomic motion. Below we calculate deformation energies
(with deformation.nma()) and atomic fluctuations (with fluct.nma()) of the first three modes
and visualize the results in PyMOL:

# Deformation energies
defe <- deformation.nma(modes)
defsums <- rowSums(defe$eil,1:3])

# Fluctuations
flucts <- fluct.nma(modes, mode.inds=seq(7,9))

# Write to PDB files (see Figure 6.)
write.pdb(pdb=NULL, xyz=modes$xyz, file="R-defor.pdb", b=defsums)
write.pdb(pdb=NULL, xyz=modes$xyz, file="R-fluct.pdb", b=flucts)

1.3.5 Overlap analysis

Finally, we illustrate overlap analysis to compare a conformational difference vector with the normal
modes to identify which modes contribute to a given conformational change (i.e. the difference
between the open and closed state of the GroEL subunit).



Figure 6: Atomic fluctuations (left) and deformation energies (right) visualized in PyMOL.

# Closed state of the subuntt
pdb.closed <- trim.pdb(pdb.full, atom.select(pdb.full, chain="H"))

# Align closed and open PDBs
aln <- struct.aln(pdb.open, pdb.closed, max.cycles=0)
pdb.closed$xyz <- aln$xyz

# Caclulate a difference vector
xyz <- rbind(pdb.open$xyz[aln$a.inds$xyz], pdb.closed$xyz[aln$a.inds$xyz])
diff <- difference.vector(xyz)

# Calculate overlap
oa <- overlap(modes, diff)

plot(oa$overlap, type=’h’, xlab="Mode index", ylab="Squared overlap", ylim=c(0,1))
points(oa$overlap, col=1)

lines(oa$overlap.cum, type=’b’, col=2, cex=0.5)

text(c(1,5)+.5, oa$overlap[c(1,5)], c("Mode 1", "Mode 5"), adj=0)

1.3.6 Domain analysis with GeoStaS

Identification of regions in the protein that move as rigid bodies is facilitated with the implementation
of the GeoStaS algorithm (Romanowska, Nowinski, and Trylska 2012). Below we demonstrate the use
of function geostas() on an nma object, and an ensemble of X-ray structures. See help(geostas)
for more details and further examples.

10



Squared overlap

Mode 5

— ol 000000020000 000
[ [ [ [

5 10 15 20

00 0.2 04 06 08 10

Mode index

Figure 7: Overlap analysis between the modes of the open subunit and the conformational difference
vector between the closed-open state.
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GeoStaS with NMA: Starting from the calculated normal modes, geostas generates a conforma-
tional ensemble by interpolating along the eigenvectors of the first 5 normal modes of the GroEL
subunit. This ensemble is then used to search for rigid domains:

# Run geostas to find domains
gs <- geostas(modes, k=4)

# Write NMA trajectory with domain assignment
mktrj(modes, mode=7, chain=gs$grps)

GeoStaS with X-ray structure ensemble: Alternatively the same analysis can be performed
on an ensemble of X-ray structures obtained from the PDB:

# Define the ensemble PDB-ids
ids <- c("1sx4_[A,B,H,I]", "ixck_[A-B]", "1sx3_[A-B]", "4ab3_[A-B]")

# Download and split PDBs by chain ID
raw.files <- get.pdb(ids, "groel pdbs", gzip=TRUE)
files <- pdbsplit(raw.files, ids, path = "groel_pdbs")

# Align and superimpose coordinates
pdbs <- pdbaln(files, fit=TRUE)

# Run geostast to find domains
gs <- geostas(pdbs, k=4)

# Plot a atomic movement similarity matiriz
plot(gs, margin.segments=gs$grps, contour=FALSE)

# Principal component analysts

gaps.pos <- gap.inspect (pdbs$xyz)

xyz <- fit.xyz(pdbs$xyz[1, gaps.pos$f.inds],
pdbs$xyz[, gaps.pos$f.inds],
fixed.inds=gs$fit.inds,
mobile.inds=gs$fit.inds)

pc.xray <- pca.xyz(xyz)

# Visualize PCs with colored domains (chain ID)
mktrj(pc.xray, pc=1, chain=gs$grps)

2 Example 2: All-atom normal mode analysis (ENM)

The coarse-grained NMA approach used above omits potentially important inter-atomic interactions
in the normal modes calculations. To provide a more detailed model Bio3D now offers an ENM

12
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Figure 8: Atomic movement similarity matrix with domain annotation.
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Figure 9: Visualization of domain assignment obtained from function geostas() using (left) an
ensemble of X-ray structures and (right) NMA.

using all atoms. We have recently shown that this all-atom approach provides normal mode vectors
with an improved agreement to normal modes calculated with the full empiric force field (i.e. the
Amber99SB force field) (Yao, Skjaerven, and Grant 2016). The followning examples demonstrates
some of the capabilities with all-atom ENM in Bio3D.

2.1 Example 2A: Dihydrofolate reductase

In the example below we load a structure of E.coli Dihydrofolate reductase (DHFR) and call function
aanma() on the pdb object to build the all-atom elastic network and calculate the normal modes.
In this particular case we use argument outmodes="calpha" to specify the diagonalization of the
effective Hessian for the calpha atoms only (Hinsen et al. 2000). In this way we can obtain normal
mode vectors only for the calpha atoms which facilitates e.g. comparison with coarse grained NMA.

# read e.colt DHFR
pdb <- read.pdb("lrg7")

##  Note: Accessing on-line PDB file

# keep only protein + methotrezate
pdb <- trim(pdb, "notwater")

# calculate all-atom NMA with ENM, output calpha only
m.aa <- aanma(pdb, outmodes="calpha")

14



## Building Hessian... Done in 1.387 seconds.
## Extracting effective Hessian.. Done in 31.201 seconds.
## Diagonalizing Hessian... Done in 0.207 seconds.

# write summary

m.aa

##

## Call:

##  aanma.pdb(pdb = pdb, outmodes = "calpha")
##

## Class:

## VibrationalModes (nma)

##

## Number of modes:
## 477 (6 trivial)

##

## Frequencies:

## Mode 7: 0.02

#i# Mode 8: 0.022

## Mode 9: 0.023

## Mode 10: 0.026

#i# Mode 11: 0.027

## Mode 12: 0.03

#i#t

## + attr: modes, frequencies, force.constants, fluctuations,
## U, L, xyz, mass, temp, triv.modes, natoms, call

We can compare the directionality of mode vectors with results obtained from coarse grained NMA
using function rmsip():

# compare with c-alpha modes
m.ca <- nma(pdb)

## Building Hessian... Done in 0.043 seconds.
## Diagonalizing Hessian... Done in 0.212 seconds.

rmsip(m.aa, m.ca)

## $overlap
## bl b2 b3 b4 b5 b6 b7 b8 b9 b10

## al 0.773 0.002 0.062 0.001 0.070 0.001 0.021 0.003 0.001 0.003
## a2 0.040 0.662 0.001 0.008 0.108 0.011 0.000 0.005 0.004 0.017
## a3 0.041 0.061 0.117 0.407 0.194 0.002 0.000 0.002 0.002 0.040
## a4 0.055 0.092 0.103 0.253 0.148 0.133 0.041 0.019 0.013 0.037
## ab 0.011 0.012 0.402 0.017 0.115 0.147 0.008 0.061 0.047 0.004

15



## a6 0.001 0.005 0.039 0.022 0.140 0.092 0.187 0.081 0.001 0.088
## a7 0.000 0.000 0.080 0.003 0.024 0.029 0.049 0.045 0.197 0.011
## a8 0.001 0.006 0.002 0.052 0.029 0.293 0.001 0.081 0.082 0.079
## a9 0.003 0.049 0.022 0.027 0.017 0.002 0.011 0.002 0.018 0.062
## al0 0.031 0.007 0.000 0.004 0.001 0.030 0.074 0.002 0.116 0.035
##

## $rmsip

## [1] 0.8128787

##

## attr(,"class")

## [1] "rmsip"

Supplying argument outmodes="noh" will result in that the entire all-atom (heavy atoms) Hessian
matrix is diagonalized. This will output a modes object containing all 3840 mode vectors facilitating
e.g. trajetory output of all-atom NMA:

# all-atom NMA, but output all atoms

m.noh <- aanma(pdb, outmodes='"noh")

## Building Hessian... Done in 1.17 seconds.
## Diagonalizing Hessian... Done in 97.441 seconds.

# output trajectory of first modes
mktrj(m.noh, mode = 7, pdb=pdb)

Figure 10: Visualization of the first non-trivial mode of DHFR using an all-atom elastic network
model for the normal mode calculation (function aanma()). Ligand MTX is shown in sapce filling
representation to illustrate it’s present in the model and the normal modes calculation.
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2.2 Example 2B: Reducing the computational load

Although all-atom ENM provides normal modes with better agreement to Amber modes it is also a far
more computational expensive approach (compare 20.7 and 0.2 seconds for the example above). To
speed up the calculation of all-atom ENM Bio3D provides functionality for the rotation-translation
block based approximation (Durand, Trinquier, and Sanejouand 1994) (F. Tama et al. 2000).
In this method, each residue is assumed to be a rigid body (or block) that has only rotational
and translational degrees of freedom. Intra-residue deformation is thus ignored. This approach
significantly speeds up the calculation of the normal modes while the results are largely identical:

# use rotation and translation of blocks
m.rtb <- aanma(pdb, rtb=TRUE)

## Building Hessian... Done in 1.174 seconds.
## Extracting effective Hessian with RTB.. Done in 5.051 seconds.
## Diagonalizing Hessian with RTB... Done in 0.222 seconds.

rmsip(m.aa, m.rtb)

## $overlap

## bl b2 b3 b4 b5 b6 b7 b8 b9 b10
## al 1 0.000 0.000 0.000 O O O 0.000 0.000 0.000
## a2 0 0.999 0.000 0.000 O O O 0.000 0.000 0.000
## a3 0 0.000 0.999 0.000 O O O 0.000 0.000 0.000
## a4 0 0.000 0.000 0.999 0 O O 0.000 0.000 0.000
## ab 0 0.000 0.000 0.000 1 O O 0.000 0.000 0.000
## a6 0 0.000 0.000 0.000 O 1 O 0.000 0.000 0.000
## a7 0 0.000 0.000 0.000 0 O 1 0.000 0.000 0.000
## a8 0 0.000 0.000 0.000 O O O 0.999 0.000 0.000
## a9 0 0.000 0.000 0.000 O O 0 0.000 0.999 0.000
## al0 0 0.000 0.000 0.000 O O O 0.000 0.000 0.992
##

## $rmsip

## [1] 0.9995298

##

## attr(,"class")
## [1] "rmsip"

Bio3D also provides a reduced atom model in which only a selection of all heavy atoms is used to
build the ENM. More specifically, three to five atoms per residue constitute the model. Here the N,
CA, C atoms represent the protein backbone, and zero (for Gly), one (for Lys, Ser, Cys, Pro, Ala,
Met, Phe, and Tyr) or two (for the remaining amino acids) selected side chain atoms represent the
side chain (selected based on side chain size and the distance to CA). This reduced-atom ENM has
significantly improved computational efficiency and similar prediction accuracy with respect to the
all-atom ENM.

17



# use reduced-atom ENM
m.red <- aanma(pdb, reduced=TRUE)

## Building Hessian... Done in 0.407 seconds.
## Extracting effective Hessian.. Done in 4.596 seconds.
## Diagonalizing Hessian... Done in 0.21 seconds.

rmsip(m.aa, m.red)

## $overlap

## b1 b2 b3 b4 b5 b6 b7 b8 b9  bl0
## al 0.878 0.063 0.017 0.003 0.001 0.000 0.000 0.009 0.012 0.001
## a2 0.078 0.594 0.280 0.006 0.001 0.004 0.000 0.001 0.006 0.004
## a3 0.002 0.306 0.649 0.004 0.001 0.004 0.001 0.004 0.002 0.004
## a4 0.006 0.000 0.006 0.930 0.000 0.005 0.004 0.004 0.005 0.000
## ab 0.002 0.001 0.001 0.001 0.900 0.002 0.062 0.002 0.001 0.001
## a6 0.000 0.008 0.001 0.005 0.013 0.853 0.070 0.001 0.000 0.001
## a7 0.000 0.001 0.001 0.000 0.052 0.089 0.786 0.000 0.012 0.006
## a8 0.003 0.001 0.000 0.000 0.000 0.000 0.006 0.631 0.003 0.233
## a9 0.001 0.003 0.021 0.003 0.001 0.002 0.010 0.034 0.715 0.108
## al0 0.009 0.001 0.000 0.000 0.000 0.005 0.000 0.188 0.029 0.191
##

## $rmsip

## [1] 0.9468653

##

## attr(,"class")
## [1] "rmsip"

The two approximations can also be combined to further decrease the computational expense:

# use both 4-bead and RTB approach
m.rr <- aanma(pdb, reduced=TRUE, rtb=TRUE)

## Building Hessian... Done in 0.391 seconds.
## Extracting effective Hessian with RTB.. Done in 3.22 seconds.
## Diagonalizing Hessian with RTB... Done in 0.228 seconds.

3 Example 3: Ensemble normal mode analysis

The analysis of multiple protein structures (e.g. a protein family) can be accomplished with the
nma.pdbs() function.® This will take aligned input structures, as generated by the pdbaln()
function for example, and perform NMA on each structure collecting the results in manner that
facilitates the interpretation of similarity and dissimilarity trends in the structure set. Here we

3See also dedicated vignettes for ensemble NMA provided with the Bio3D package.
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will analyze a collection of Dihydrofolate reductase (DHFR) structures with low sequence identity
(Example 3A) and large set of closely related transducin heterotrimeric G protein family members
(Example 3B).

3.1 Example 3A: Dihydrofolate reductase

In the following code we collect 9 bacterial DHFR structures of 4 different species from the
protein databank (using get.pdb()) with sequence identity down to 27% (see the call to function
seqidentity() below), and align these with pdbaln():

# Select bacterial DHFR PDB IDs

ids <- c("1rx2_A", "1rx4_ A", "1lrg7_ A",
"3jw3_A", "3sai_A",
"1df7_A", "4kne A",
"3fyv_X", "3sgy_B")

# Download and split by chain ID
raw.files <- get.pdb(ids, path="raw_pdbs")
files <- pdbsplit( raw.files, ids )

# Alignment of structures
pdbs <- pdbaln(files)

# Sequence tdentity
summary( c(seqidentity(pdbs)) )

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.2680 0.3460 0.3960 0.5265 0.9940 1.0000

The pdbs object now contains aligned C-alpha atom data, including Cartesian coordinates, residue
numbers, residue types, and B-factors. The sequence alignment is also stored by default to the
FASTA format file ‘aln.fa’ (to view this you can use an alignment viewer such as SEAVIEW, see
Requirements section above). Function nma.pdbs() will calculate the normal modes of each protein
structures stored in the pdbs object. The normal modes are calculated on the full structures as
provided by object pdbs. With the default argument rm.gaps=TRUE unaligned atoms are omitted
from output in accordance with common practice (Fuglebakk, Echave, and Reuter 2012).

# NMA on all structures
modes <- nma(pdbs)

The modes object of class enma contains aligned normal mode data including fluctuations, RMSIP
data, and aligned eigenvectors. A short summary of the modes object can be obtain by calling the
function print(), and the aligned fluctuations can be plotted with function plot():

19



print (modes)

#i#

## Call:

## nma.pdbs(pdbs = pdbs)

##

## Class:

##  enma

##

## Number of structures:

## 9

#i#

## Attributes stored:

## - Root mean square inner product (RMSIP)

## - Aligned atomic fluctuations

## - Aligned eigenvectors (gaps removed)

## - Dimensions of x3$U.subspace: 456x450x9

#i#

## Coordinates were aligned prior to NMA calculations
##

## + attr: fluctuations, rmsip, U.subspace, L, full.nma, xyz,
## call

# Plot fluctuation data
col <- c(1,1,1, 2,2, 3,3, 4,4)
plot(modes, pdbs=pdbs, col=col)

## Extracting SSE from pdbs$sse attribute

legend("topleft", col=unique(col), 1lty=1,
legend=c("E.Coli", "B.Anthracis", "M.Tubercolosis", "S.Aureus"))

# Alternatively, one can use ’rm.gaps=FALSE’ to keep the gap containing columns
modes <- nma.pdbs(pdbs, rm.gaps=FALSE)

Cross-correlation analysis can be easily performed and the results contrasted for each member of the
input ensemble. Below we calculate and plot the correlation matrices for each structure and then
output correlations present only in all input structures.

# Calculate correlation matrices for each structure
cij <- dccm(modes)

# Determine correlations present only in all 9 input structures
cij.all <- filter.dccm(cij$all.dccm, cutoff.sims=9, cutoff.cij = 0)
plot.dccm(cij.all, main="Consensus Residue Cross Correlation")
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Figure 11: Results of ensemble NMA on four distinct bacterial species of the DHFR enzyme.

3.2 Example 3B: Transducin

In this section we will demonstrate the use of nma.pdbs() on the example transducin family data
that ships with the Bio3D package. This can be loaded with the command data(transducin) and
contains an object pdbs consisting of aligned C-alpha coordinates for 53 transducin structures from
the PDB as well their annotation (in the object annotation) as obtained from the pdb.annotate()
function. Note that this data can be generated from scratch by following the Comparative Structure
Analysis with Bio3D Vignette available both on-line and from within the Bio3D package.

# Load data

data(transducin)

pdbs <- transducin$pdbs

annotation <- transducin$annotation

# Find gap positions
gaps.res <- gap.inspect(pdbs$ali)
gaps.pos <- gap.inspect (pdbs$xyz)

# Calculate normal modes of the 53 structures
modes <- nma.pdbs(pdbs, ncore=4)

# Make fluctuation plot
plot(modes, col=annotation[, "color"], pdbs=pdbs)

## Extracting SSE from pdbs$sse attribute
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legend("left", 1lty=c(1, 1), lwd=c(2, 2),
col=c("red", "green"), legend=c("GTP", "GDP"))
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Figure 12: Structural dynamics of transducin. The calculation is based on NMA of 53 structures: 28
GTP-bound (red), and 25 GDP-bound (green).

The similarity of structural dynamics is calculated by RMSIP based on the 10 lowest frequency
normal modes. The rmsip values are pre-calculated in the modes object and can be accessed through
the attribute modes$rmsip. As a comparison, we also calculate the root mean square deviation
(RMSD) of all pair-wise structures:

# Plot a heat map with clustering dendogram

ids <- substr(basename(pdbs$id), 1, 6)
heatmap((1l-modes$rmsip), labRow=annotation[, "state"], labCol=ids, symm=TRUE)

# Calculate patr-wise RMSD wvalues
rmsd.map <- rmsd(pdbs$xyz, a.inds=gaps.pos$f.inds, fit=TRUE)
heatmap(rmsd.map, labRow=annotation[, "state"], labCol=ids, symm=TRUE)

3.3 Example 3C: All-atom Ensemble NMA

We can also apply all-atom ENMs to the ensemble NMA approach using function aanma.pdbs().
Note the need for function read.all() to obtain an all-atom version of the pdbs object.
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# Select bacterial DHFR PDB IDs
ids <- c("1rx2_A", "1df7_A", "4kne_ A", "3sgy_B")

# Download and split by chain ID
raw.files <- get.pdb(ids, path="raw_pdbs")
files <- pdbsplit( raw.files, ids )

# Read and align structures

aln <- pdbaln(files)
pdbs <- read.all(aln)

# calculate modes
modes <- aanma(pdbs, rtb=TRUE)

## Fitting pdb structuresdone

##

## Details of Scheduled Calculation:

#Ht ... 4 input structures

## ... storing 450 eigenvectors for each structure

## ... dimension of x$U.subspace: ( 456x450x4 )

## ... coordinate superposition prior to NM calculation

## ... aligned eigenvectors (gap containing positions removed)

#i# ... rotation-translation block (RTB) approximation will be applied
#H# ... estimated memory usage of final ’eNMA’ object: 6.3 Mb

# Make fluctuation plot
plot(modes, pdbs=pdbs)

## Extracting SSE from pdbs$sse attribute

4 Example 4: Variance weighted normal mode analysis

In this example we illustrate an approach of weighting the pair force constants based on the variance
of the inter atomic distances obtained from an ensemble of structures (e.g. available X-ray structures).
The motivation for such variance-weighting is to reduce the well known dependence of the force
constants on the one structure upon which they are derived (F Tama and Sanejouand 2001).

4.1 Example 4A: GroEL

We first calculate the normal modes of both the closed and open state of the GroEL subunit, and we
illustrate the difference in the agreement towards the observed conformational changes (characterized
by X-ray and EM studies). We will then use an ensemble of X-ray/EM structures as weights to the

pair-force constants.
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Figure 15: Fluctuation plot of 4 E.coli DHFR structures calculated using all-atom ENM.

# Define the ensemble PDB-ids
ids <- c("1sx4_[A,B,H,I]", "ixck_[A-B]", "1sx3_[A-B]", "4ab3_[A-B]")

# Download and split PDBs by chain ID

raw.files <- get.pdb(ids, "groel pdbs", gzip=TRUE)
files <- pdbsplit(raw.files, ids, path = "groel pdbs")
# Align and superimpose coordinates

pdbs <- pdbaln(files, fit=TRUE)

4.1.1 Calculate normal modes

Next we will calculate the normal modes of the open and closed conformational state. They are
stored at indices 1 and 5, respectively, in our pdbs object. Use the pdbs2pdb() to fetch the pdb
objects which is needed for the input to nma().

# Inspect gaps
gaps.res <- gap.inspect(pdbs$ali)
gaps.pos <- gap.inspect(pdbs$xyz)

# Access PDB objects
pdb.list  <- pdbs2pdb(pdbs, inds=c(1,5,9), rm.gaps=TRUE)

Note that we are here using the argument rm.gaps=TRUE to omit residues in gap containing columns
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of the alignment. Consequently, the resulting three pdb objects we obtain will have the same lengths
(523 residues), which is convenient for subsequent analysis.

pdb.open  <- pdb.list[["1sx4_A"]]
pdb.closed <- pdb.list[["1xck A"]]
pdb.rstate <- pdb.list[["4ab3_A"]]

# Calaculate normal modes
modes.open  <- nma(pdb.open)
modes.closed <- nma(pdb.closed)
modes.rstate <- nma(pdb.rstate)

4.1.2 Overlap analysis

Use overlap analysis to determine the agreement between the normal mode vectors and the confor-
mational difference vector:

# Difference vector 1: closed - open

diff.vec.1l <- difference.vector(pdbs$xyz[c(1,5), gaps.pos$f.inds])
# Difference vector 2: closed - rstate

diff.vec.2 <- difference.vector(pdbs$xyz[c(5,9), gaps.pos$f.inds])

# Calculate overlap

oa <- overlap(modes.open, diff.vec.1)
ob <- overlap(modes.closed, diff.vec.1)
oc <- overlap(modes.closed, diff.vec.2)

plot(oa$overlap.cum[1:10], type=’b’, ylim=c(0,1),
ylab="Squared overlap", xlab="Mode index", lwd=2)

lines(ob$overlap.cum[1:10], type=’b’, 1lty=2, col=2, 1lwd=2)

lines(oc$overlap.cum[1:10], type=’b’, 1lty=3, col=4, lwd=1)

legend ("bottomright",
c("Open to closed", "Closed to open", "Closed to r-state"),
col=c(1,2,4), lty=c(1,2,3))

4.1.3 Variance weighting

From the overlap analysis above we see the good agreement (high overlap value) between the
conformational difference vector and the normal modes calculated on the open structures. Contrary,
the lowest frequency modes of the closed structures does not show the same behavior. We will thus
proceed with the weighting of the force constants. First we will calculate the variance of all pairwise
distances in the ensemble and use this as weights for the NMA:
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Figure 16: Overlap anlaysis with function overlap(). The modes calculated on the open state of
the GroEL subunit shows a high similarity to the conformational difference vector (black), while
the agreement is lower when the normal modes are calculated on the closed state (red). Blue line
correspond to the overlap between the closed state and the r-state (a semi-open state characterized
by a rotation of the apical domain in the opposite direction as compared to the open state.
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# Calcualte wvariance
wts <- var.xyz(pdbs$xyz[, gaps.pos$f.inds])

Weights to the force constants can be included by the argument ‘fc.weights’ to function nma().
This needs be a matrix with dimensions NxN (where N is the number of C-alpha atoms). Here we
will run a small for-loop with increasing the strength of the weighting at each step and store the
new overlap values in the variable ‘ob.wtd’:

ob.wtd <- NULL

for (i in 1:10 ) {
modes.wtd <- nma(pdb.closed, fc.weights=wts**i)
ob.tmp <- overlap(modes.wtd, diff.vec.1)
ob.wtd <- rbind(ob.wtd, ob.tmp$overlap.cum)

plot(oa$overlap.cum[1:10], type=’b’, ylim=c(0,1),
ylab="Squared overlap", xlab="Mode index", axes=T, lwd=2)
lines(ob$overlap.cum[1:10], type=’b’, 1lty=2, col=1, 1lwd=2)

cols <- rainbow(10)
for ( i in 1:nrow(ob.wtd) ) {

lines(ob.wtd[i,1:10], type=’b’, lty=1, col=cols[i])
}

legend ("bottomright",

c("Open state", "Closed state", "Closed state (weighted)"),
col=c("black", "black", "green"), lty=c(1,2,1))

4.1.4 RMSIP calculation
RMSIP can be used to compare the mode subspaces:

ra <- rmsip(modes.open, modes.wtd)
rb <- rmsip(modes.open, modes.closed)

par (mfrow=c(1,2))
plot(ra, ylab="NMA(open)", xlab="NMA(weighted)")
plot(rb, ylab="NMA(open)", xlab="NMA(closed)")

4.1.5 Match with PCA

Finally, we compare the calculated normal modes with principal components obtained from the
ensemble of X-ray structures using function pca.xyz():
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Figure 18: RMSIP maps between (un)weighted normal modes obtained from the open and closed
subunits.

# Calculate the PCs
pc.xray <- pca.xyz(pdbs$xyz[,gaps.pos$f.inds])

# or alternatively. ..
pc.xray <- pca(pdbs)

# Calculate RMSIP wvalues
rmsip(pc.xray, modes.open)$rmsip

## [1] 0.6226207

rmsip(pc.xray, modes.closed)$rmsip

## [1] 0.6320116

rmsip(pc.xray, modes.rstate)$rmsip

## [1] 0.5889645

rmsip(pc.xray, modes.wtd)$rmsip

## [1] 0.6617351
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4.2 Example 4B: Transducin

This example will run nma() on transducin with variance weighted force constants. The modes
predicted by NMA will be compared with principal component analysis (PCA) results over the
transducin family. We load the transducin data via the command data(transducin) and calculate the
normal modes for two structures corresponding to two nucleotide states, respectively: GDP (PDB id
1TAG) and GTP (PDB id 1TND). Again we use function pdbs2pdb() to build the pdb objects
from the pdbs object (containing aligned structure/sequence information). The coordinates of the
data set were fitted to all non-gap containing C-alpha positions.

data(transducin)
pdbs <- transducin$pdbs

gaps.res <- gap.inspect(pdbs$ali)
gaps.pos <- gap.inspect (pdbs$xyz)

# Fit coordinates based on all non-gap positions
# and do PCA

xyz <- pdbfit(pdbs)

pc.xray <- pca.xyz(xyz[, gaps.pos$f.inds])

# Fetch PDB objects

npdbs <- pdbs

npdbs$xyz <- xyz

pdb.list <- pdbs2pdb(npdbs, inds=c(2, 7), rm.gaps=TRUE)
pdb.gdp <- pdb.list[[ grep("1TAG_A", names(pdb.list)) 1]
pdb.gtp <- pdb.list[[ grep("1TND_B", names(pdb.list)) 1]

# Calculate normal modes
modes.gdp <- nma(pdb.gdp)
modes.gtp <- nma(pdb.gtp)

Now, we calculate the pairwise distance variance based on the structural ensemble with the function
var.xyz() as described above. This will be used to weight the force constants in the elastic network
model.

# Calculate weights
weights <- var.xyz(xyz[, gaps.pos$f.inds])

# Calculate normal modes with wetighted pair force constants

modes.gdp.b <- nma(pdb.gdp, fc.weights=weights**100)
modes.gtp.b <- nma(pdb.gtp, fc.weights=weights**100)

To evaluate the results, we calculate the overlap (square dot product) between modes predicted by
variance weighted or non-weighted NMA and the first principal component from PCA.
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oa <- overlap(modes.gdp, pc.xray$U[,1])
ob <- overlap(modes.gtp, pc.xray$ul[,1])
oc <- overlap(modes.gdp.b, pc.xray$ul[,1])
od <- overlap(modes.gtp.b, pc.xray$u[,1])

plot(oa$overlap.cum, type=’o’, ylim=c(0,1), col="darkgreen", lwd=2, xlab="Mode",
ylab="Cummulative overlap")

lines(ob$overlap.cum, type=’o’, ylim=c(0,1), col="red", lwd=2)

lines(oc$overlap.cum, type=’b’, ylim=c(0,1), col="darkgreen", lwd=2, lty=2)

lines(od$overlap.cum, type=’b’, ylim=c(0,1), col="red", lwd=2, lty=2)

text (20, oa$overlap.cum[20], label=round(oa$overlap.cum[20], 2), pos=3)

text (20, ob$overlap.cum[20], label=round(ob$overlap.cum[20], 2), pos=3)

text (20, oc$overlap.cum[20], label=round(oc$overlap.cum[20], 2), pos=3)

text (20, od$overlap.cum[20], label=round(od$overlap.cum[20], 2), pos=3)

legend("topleft", pch=1, lty=c(1, 1, 2, 2), col=c("darkgreen", "red",

"darkgreen", "red"), legend=c("GDP", "GTP", "Weighted GDP", "Weighted GTP"))
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Figure 19: Variance weighted force constants improve NMA prediction

33



5 Example 5: User-defined pair force constant functions

In this example we demonstrate the interface for defining custom functions for the pair spring force
constants. A custom function can be obtained through simple scripting as shown below.

5.1 Example 5A: Specifying a simple function

We first show how to define a simple force constant function by building a revised version of the
parameter-free ANM force field. The function my.ff() below takes as input r which is a vector of
inter-atomic (calpha) distances (i.e. distances from atom ¢, to all other atoms in the system; this
function will thus be called N times, where N is the number of calpha atoms). It will in this case
return 0 for the pairs with a distance larger than 10 A, and r—2 for all other pairs. Our simple
function will thus look like:

# Define function for spring force constants
"my.ff" <- function(r, ...) {

ifelse( r>10, 0, r~(-2) )
}

Once the function is in place we can feed it to function nma() to calculate the normal modes based
on the particular force constants built with our new function. Below we apply it to the lysozyme
structure (PDB id 1hel) from Example 1:

# Download PDB and calculate normal modes
pdb <- read.pdb("lhel")
modes <- nma(pdb, pfc.fun=my.ff)

Alternatively we can take a more manual approach by calling build.hessian() if we want to
investigate the Hessian matrix further (note that build.hessian is called from within function
nma() which will diagonalize the hessian to obtain the normal modes and thus not return it to the
user). In the code below we first build the hessian and illustrate how to obtain the normal modes
through calls to either eigen() or nma() (which can also take a Hessian matrix as input):

# Indices for CA atoms
ca.inds <- atom.select(pdb, ’calpha’)

# Build hessian matriz
h <- build.hessian(pdb$xyz[ ca.inds$xyz 1, pfc.fun=my.ff)

# Diagonalize and obtain eigenvectors and eigenvalues
modes <- eigen(h, symmetric=TRUE)

# ... or feed the Hessian to function ’nma()’
modes <- nma(pdb, hessian=h, mass=FALSE)

Note that function nma() assumes the Hessian to be mass-weighted and we therefore have to specify
mass=FALSE in this particular case. To obtain a mass-weighted Hessian pass the amino acid masses
through argument aa.mass to function build.hessian().
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5.2 Example 5B: Specific force constants for disulfide bridges

In the following code we illustrate a more advanced force constant function making use of ar-
guments atom.id and ssdat which is passed from function build.hessian() by default. This
allows users to access the protein sequence (ssdat$seq), secondary structure data (ssdat$sse),
beta bridges (ssdat$beta.bridges), helix 1-4 (ssdat$helix14), and disulfide bridges (ss bonds;
ssdat$ss.bonds) when building the force constants.

First we define our new function (ff.custom()) and specify the force constants which should be
applied to bonded and non-bonded interactions (k.bonded and k.nonbonded, respectively). Next
we define the the force constant for the disulfide bridges (k.ssbond):

"ff. custom" <- function(r, atom.id, pdb=NULL, ss.bonds=NULL, ...) {
# Default force constants (Hinsen et al 2000)
k.bonded <- (r * 8.6 x 1072) - (2.39 * 1073)
k.nonbonded <- (128 * 1074) * r~(-6)

# Special force constant for SS-bonds
k.ssbond <- 50;

# Calculate default values (equivalent to the calpha ff)
ks <- ifelse(r < 4.0,

k.bonded,

k.nonbonded)

if('is.null(ss.bonds)) {
# If atom.1d is part off a ssbond..
inds <- which(ss.bonds == atom.id, arr.ind=TRUE)

if (length(inds) > 0) {
# Find ss—-bond pair
inds.paired <- ss.bonds[ inds[1, "row"], ]
j <- inds.paired[ inds.paired != atom.id ]

# and change the spring force constant
ks[j] <- k.ssbond
b
+
return(ks)

}

The disulfide bridges can be supplied as input to nma() function via a simple two-column matrix:

# Define SS-bonds in a two-column matriz
ss.bonds <- matrix(c(76,94, 64,80, 30,115, 6,127),
ncol=2, byrow=TRUE)

# Calculate modes with custom force field
modes <- nma(pdb, pfc.fun=ff.custom, ss.bonds=ss.bonds)
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Document Details

This document is shipped with the Bio3D package in both R and PDF formats. All code can
be extracted and automatically executed to generate Figures and/or the PDF with the following
commands:

library (rmarkdown)
render ("Bio3D nma.Rmd", "all")

Information About the Current Bio3D Session

sessionInfo ()

##
##
##
##
#H#
##
#Ht
##
##
##
##
##
##
##
##
#Ht

R version 3.3.1 (2016-06-21)
Platform: x86_64-redhat-linux-gnu (64-bit)
Running under: Fedora 24 (Twenty Four)

locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C

[11] LC_MEASUREMENT=en_ US.UTF-8 LC_IDENTIFICATION=C

attached base packages:
[1] stats graphics grDevices utils datasets methods

other attached packages:

## [1] bio3d_2.3-0 rmarkdown_1.0

##

## loaded via a namespace (and not attached):

## [1] Rcpp_0.12.7 lattice_0.20-33 codetools_0.2-14
## [4] digest_0.6.10 grid_3.3.1 formatR_1.4

## [7] magrittr_1.5 bigmemory.sri_0.1.3 evaluate_0.9

## [10] stringi 1.1.1 bigmemory_4.5.19 tools_3.3.1

## [13] stringr_1.0.0 yaml_2.1.13 parallel_3.3.1
## [16] htmltools 0.3.5 knitr_1.14
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