Protein Structure Networks with Bio3D
Xin-Qiu Yao, Guido Scarabelli, Lars Skjaerven & Barry J. Grant
October 8, 2014 (last updated: January 20, 2018)

Background:

Bio3D' is an R package that provides interactive tools for structural bicinformatics. The primary focus of
Bio3D is the analysis of bimolecular structure, sequence and simulation data.

The Bio3D package (version 2.1 and above) contains functionality for the creation and analysis of protein
structure networks. This vignette will introduce this functionality by building and analyzing networks obtained
from atomic correlation data derived from normal mode analysis (NMA) and molecular dynamics (MD)
simulation (Figure 1)2. Note that Bio3D contains extensive functionality for both NMA and MD analysis.
An introduction to each of these areas is detailed in separate NMA and MD vignettes.

Normal Mode Analysis
nma() or nma.pdbs() \
Correlation Analysis N Visualization
dcem() or Imif) "] plot.dcecm() and pymol.decem()
Molecular Dynamics / ¢
read.dcd() or read.ncdf()

Network Analysis Visualization
cna() plot.cna() and vmd.cna()

v

print.cna(), prune.cna(), summary.cna(),
layout.cna(), identify.cna(), cnapath() etc...

Y

Figure 1: Overview of a typical Bio3D network analysis protocol with key functions detailed
in blue. Normal mode and/or molecular dynamics input first undergoes correlation analysis (with the
functions dcem() or lmi()). The output from these functions is typically a matrix of residue-by-residue
cross-correlations. Correlation network analysis can then be performed (with the cna() function) to
generate a correlation network with residues as nodes that are linked by weighted edges that are proportional
to their degree of correlated motion. The cna() function also performs a community clustering analysis
to identify communities of highly correlated residues. The full residue network and coarse-grained community
network can be visualized and analyzed further. This methodology can provide valuable insight not readily
available from the measures of correlation alone.

Requirements: Detailed instructions for obtaining and installing the Bio3D package on various platforms
can be found in the Installing Bio3D Vignette available both on-line and from within the Bio3D package.
Note that this vignette also makes use of the IGRAPH R package, which can be installed with the command

install.packages("igraph")

IThe latest version of the package, full documentation and further vignettes (including detailed installation instructions) can
be obtained from the main Bio3D website: http://thegrantlab.org/bio3d/

2This document contains executable code that generates all figures contained within this document. See help(vignette) within
R for full details.

http://thegrantlab.org/bio3d/tutorials/normal-mode-analysis
http://thegrantlab.org/bio3d/tutorials/trajectory-analysis
http://thegrantlab.org/bio3d/tutorials
http://igraph.org/
http://thegrantlab.org/bio3d/
http://thegrantlab.org/bio3d/

Part I: Basic network generation and visualization

In this section we will first focus on correlation network analysis derived from NMA, and in subsequent
sections MD.

Network generation from normal mode analysis data

The code snippet below first loads the Bio3D package, then reads an example PDB structure from the RCSB
online database. We then follow the flow in Figure 1 by performing NMA, then dynamic cross-correlation
analysis, and finally network analysis with the cna() function.

library(bio3d)

library(igraph)

pdbfile <- system.file("examples/hivp.pdb", package = "bio3d")
pdb <- read.pdb(pdbfile)

modes <- nma(pdb)

cij <- dccm(modes)

net <- cna(cij, cutoff.cij=0.3)

To enable quick examination of the network analysis results we provide cna specific variants of the print(),
summary() and plot() functions, as demonstrated below:

print (net)

##

Call:

cna.dccm(cij = cij, cutoff.cij = 0.3)
#it

Structure:

- NETWORK NODES#: 198 EDGES#: 752
- COMMUNITY NODES#: 8 EDGES#: 11

##

+ attr: network, communities, community.network,
#Hit community.cij, cij, call

Summary information as a table
x <- summary(net)

id size members
1 36 c(1:8, 89:107, 190:198)
2 20 c(9:11, 22:32, 83:88)
3 24 c(12:21, 60:73)
4 28 c(33:46, 55:59, 74:82)
5 16 c(47:54, 146:153)
6 17 c(108, 122:130, 183:189)
7 28 c(109:121, 159:173)
8 29 c(131:145, 154:158, 174:182)

Other useful things are returned from **summary.cna()**
attributes(x)

$names
[1] "id" "size" "members" "tbl"

List the residues belonging to the 5th community
x$members [5]

$5¢
47 48 49 50 51 52 53 54 146 147 148 149 150 151 152 153
47 48 49 50 b1 52 53 54 146 147 148 149 150 151 152 153

Plot both the ‘full’ all-residue network and simplified community network
plot(net, pdb, full = TRUE, vertex.label.cex=0.7)
plot(net, pdb)

Figure 2: Full all-residue network and simplified community network

Side note: The raw correlation matrix obtained from NMA (or indeed MD) typically has many small but
non-zero value elements. By default the ena() function excludes some of the weakest values (close to zero) to
avoid building an edge heavy network, which would considerably slow down further analysis. The cutoff.cij
argument in the ena() function specifies the lower boundary for considering correlation values. All values
whose absolute value is lower than cutoff.cij will be ignored when defining network edges.

Note that the above code plots both a full all-residue network as well as a more coarse grained community
network - see Figure 2. In this example, and by default, the Girvan-Newman clustering method was used to
map the full network into communities of highly intra-connected but loosely inter-connected nodes these were
in turn used to derive the simplified network displayed in Figure 2B. We will discuss community detection
in a separate section below and for now simply highlight that a comparison of the full network and the
distribution and connectivity of communities between similar biomolecular systems (e.g. in the presence and
absence of a binding partner or mutation) has the potential to highlight differences in coupled motions that
may be indicative of potential allosteric pathways. This approach has previously been applied to investigate
allostery in tRNA-protein complexes, kinesin motor domains, G-proteins, thrombin, and other systems [1-5].

Another useful function for the inspection of community structure is the vind.cna() function, which permits
interactive network visualization in the VMD molecular graphics program (see Figure 3).

View the network in VMD (see Figure 3)
vmd.cna(net, pdb, launch = TRUE)

Figure 3: Example of vind.cna() output. For this figure we have set the VMD display style to ‘Tube’
and color method to ‘Color by Chain’. This allows one to see corresponding regions of structure colored by
community along with the community protein structure network

One of the main advantages of correlation network analysis is that it often facilitates the interpretation of
correlated motions that can be challenging to rationalize from the output of a dynamic correlation map alone
(e.g. the output of the dccm() function). For example, the identified communities of highly intra-connected
residues can be tied into the visualization of the correlation data (Figure 4) and cross referenced to the
network visualizations presented in Figures 2 and 3. In this example the colored marginal segments of
Figure 4 match the identified communities in Figures 2 and 3:

Plot the correlation matriz with community annotation, see Figure 4.
plot.dccm(cij, margin.segments = net$communities$membership, main="")

The structure of cna() network objects

To more fully appreciate the results of network analysis one should become somewhat familiar with the
structure of the object returned from the cna() function. This will allow you to generate customized
visualizations beyond those in Figures 2 to 4 and also enable you to more fully examine the effect of different
parameters on network structure and topology.

The output of the cna() function is a list object of class c¢na with both network and community structure
attributes. These are summarized at the bottom of the print(net) results above (see the line begining with
‘+ attr’) and can be explicitly listed with the attributes(cna) command:

attributes(net)

1.0

150 — ' L 05
o
=
18]
S 100 L
3 0.0
[14]
[/ }]
o
50 — - -0.5
1 4.0
1 50 100 150
Residue No.

Figure 4: Example dynamical cross-correlation matrix (DCCM) plot with community annotation. Note that
unique colors are assigned to communities (that are not necessary consecutive in sequence) and that these
correspond to those annotated communities in all previous network Figures and those used by VMD in Figure
3.

#it
#it
#it
#it
#i#t
#it

$names

[1] "network" "communities" "community.network"
[4] "community.cij" "cij" "call"

$class

[1] n Cna"

Here we introduce each of these components in turn:

$network: The full protein structure network typically with a node per residue and connecting edges
weighted by their corresponding correlation values (i.e. input cij values optionally filtered by the user
defined ‘cutoff.cij’). This filtered cij matrix is also returned in the output as $cij, as listed below.

$communities: A community clustering object detailing the results of clustering the full $network.
This is itself a list object with a number of attributes (see attributes(net$communities) for
details). Notable attributes include $communities$membership, $communities$modularity and
$communities$algorithm. These components detail the nodes (typically residues) belonging to each
community; the modularity (which represents the difference in probability of intra- and intercommunity
connections for a given network division); and the clustering algorithm used respectively.

$cij: The filtered correlation matrix used to build the full $network.

$community.network: A coarse-grained community network object with the number of nodes equal
to the number of communities present in $communities (i.e. the community clustering of the full
network discussed below) and edges based on the inter-community coupling as determined by the input
‘collapse.method’ (by default this is the maximum coupling between the original nodes of the respective
communities).

$community.cij: A cij matrix obtained by applying a “collapse.method” on $cij. The rows and
columns match the number of communities in $communities. The individual values are based on the
cij couplings of inter-community residues. The currently available collapse methods for defining these
values include: max, mean, trimmed and median.

Both the $network and $community.network attributes are igraph compatible network objects [6] and contain
additional node (or vertex) and edge annotations that can be accessed with the V() and E() functions in the
following way:

Basic data access follows the igraph package scheme
head (V(net$network)$color)

[1] "#OOOOFF" "#O0OOOFF" "#0OOOFF" "#OOOOFF" "#OOOOFF" "#0OOOFF"

V(net$community.network) $size

[1] 36 20 24 28 16 17 28 29

E(net$community.network) $weight

##
##t

[1] 0.4959895 0.4579519 0.5620385 0.5190477 0.7274177 0.4988692 0.3649480
[8] 0.3648937 0.6414050 0.5867744 0.4989730

http://igraph.sourceforge.net

V(net$community.network)$name

[1] lllll II2I| Il3l| Il4|| II5II ll6ll |I7Il II8II

In addition to various Bio3D functions, the full set of extensive igraph package features can thus be used to
further analyze these network objects.

The community clustering procedure

The $communities attribute returned by the cna() function provides details of the community clustering
procedure. This procedure aims to split the full network into highly correlated local substructures (referred
to as communities) within which the network connections are dense but between which they are sparser. A
number of community detection algorithms can be used to solve this so called graph-partitioning problem.
The default Girvan-Newman edge-betweenness approach is a divisive algorithm that is based on the use of
the edge betweenness as a partitioning criterion. “Betweenness” is calculated by finding the shortest path(s)
between a pair of vertexes and scoring each of the edges on this/these path(s) with the inverse value of the
number of shortest paths. (So if there was only one path of the shortest length, each edge on it would score 1
and if there were 10 paths of that length, each edge would score 1/10.) This is done for every pair of vertexes.
In this way each edge accumulates a “betweenness” score for the whole network. The network is separated into
clusters by removing the edge with the highest “betweenness”, then recalculating betweenness and repeating.
The method is fully described in (Girvan and Newman, 2002 PNAS) [7].

A useful quantity used to measure the quality of a given community partition is the modularity (detailed in
the $communities$modularity component of cna() output). The modularity represents the difference in
probability of intra- and inter-community connections for a given network division. Modularity values fall in
the range from 0 to 1, with higher values indicating higher quality of the community structure. The optimum
community structures obtained for typical MD and NMA derived correlation networks fall in the 0.4 to 0.7
range.

head (net$communities$modularity)

[1] -5.770111e-03 -4.430715e-03 -3.616681e-03 -8.542082e-04 2.043481e-05
[6] 2.076868e-03

max (net$communities$modularity)

[1] 0.7381234

The community.tree() function can be used to reconstruct the community membership vector for each
clustering step. Here we plot modularity vs number of communities.

See Figure 5.
tree <- community.tree(net, rescale=TRUE)
plot(tree$num.of.comms, tree$modularity, xlab="Communities", ylab="Modularity")

Note that there are many points near the maximum modularity value in Figure 5. In such cases a number of
alternative community partitions may be equally high scoring and therefore worth inspecting more closely. For
example we will often favor a partition point with a smaller number of overall communities but slightly lower
modularity score based on some prior knowledge of the system (for example results from a related system).

Below we inspect the maximum modularity value partitioning and the number of communities (k) at the
point of maximum modularity. Based on a quick inspection of the clustering dendrogram we explore a new

http://igraph.sourceforge.net

0.6

Modularity
0.4

0.2

0.0

| | | | |
0 50 100 150 200

Communities

Figure 5: Network modularity upon removing edges during the betweenness clustering procedure for community
annotation. Note the peak in modularity at k=8.

membership partitioning (at k=3). Again this example is purely for demonstrating some of the available
functionality within the package and we encourage motivated readers to explore the true structure within their
data by examining multiple structures together with the effects of different input parameters and clustering
procedures.

max.mod.ind <- which.max(tree$modularity)
tree$num.of .comms[max.mod.ind]

[1] 8

Membership vector at this partition point
tree$tree[max.mod.ind,]

[1] 11111111222333333333322222222222444
[36] 4 4444444444555555554444433333333333
(711 33344444444422222211111111111111111
[106] 1 1 677777777777 77666666666388888888838
[1411 8 888855555555888887 77777777777 7778S38
[176] 8 8888886666666 111111111

Should be the same as that contained in the original CNA network object
all(net$communities$membership == tree$tree[max.mod.ind,])

[1] TRUE

Inspect the clustering dendrogram (Figure 6). To match colors use ’colors=vmd_colors() [memb.k3]"’
h <- as.hclust(net$communities)
hclustplot(h, k=3)

o

(o] o

8]

=]

In] —
— —1 1
o

[] —

—

=]

o

—rrT—

Figure 6: Example of community partitioning viewed as a dendrogram with colored communities

Inspect a nmew membership partitioning (at k=3)
memb.k3 <- tree$tree[tree$num.of.comms == 3,]

Produce a new k=3 community network (Figure 7)
net.3 <- network.amendment(net, memb.k3)
plot(net.3, pdb)

View the network in VMD (see Figure 8)
vmd.cna(net.3, trim.pdb(pdb, atom.select(pdb,"calpha")), launch=TRUE)

Network generation from molecular dynamics data

For this example section we apply correlation network analysis to a short molecular dynamics trajectory
of Human Immunodeficiency Virus aspartic protease (HIVpr). This trajectory is included with the Bio3D
package and stored in CHARMM/NAMD DCD format. To reduce file size and speed up example execution,
non C-alpha atoms have been previously removed (see the Trajectory Analysis vignette for full details).

The code snippet below first sets the file paths for the example HIVpr starting structure (pdbfile) and
trajectory data (dcdfile), then reads these files (producing the objects ded and pdb).

http://thegrantlab.org/bio3d/html/index.html

Figure 7: Example of forcing a k=3 community network

Figure 8: Example of vimd.cna() output for modified k=3 community network. Within VMD we have set
display style to ‘Tube’ and color to ‘Color by Chain’ as well as removing community spheres by deleting
graphical objects.

10

"bio3d")
"bio3d")

dcdfile <- system.file("examples/hivp.dcd", package
pdbfile <- system.file("examples/hivp.pdb", package

Read MD data
dcd <- read.dcd(dcdfile)
pdb <- read.pdb(pdbfile)

inds <- atom.select(pdb, resno = c(24:27, 85:90), elety = "CA")
trj <- fit.xyz(fixed = pdb$xyz, mobile = dcd,
fixed.inds = inds$xyz, mobile.inds = inds$xyz)

Once we have the superposed trajectory frames we can asses the extent to which the atomic fluctuations
of individual residues (in this very short example simulation) are correlated with one another and build a
network from this data:

See Figure 9.
cij <- dcem(trj)
net <- cna(cij)
plot(net, pdb)

18

.9 3 2 16 7

4
67 e 19

Figure 9: Example network analysis of MD data

Side note: Due to the often noisy nature of correlations calculated from short MD simulations, we typically
suggest running longer simulations and multiple replica simulations from which a consensus correlation matriz
and consensus network can be generated and compared to results obtained from individual simulations. For
example, see the following works: Scarabelli and Grant, (2014). Kinesin-5 allosteric inhibitors uncouple the
dynamics of nucleotide, microtubule and neck-linker binding sites, Biophys J. 107:2204 and Yao, et al., and
Grant, (2016). Dynamic coupling and allosteric networks in the alpha subunit of heterotrimeric G proteins. J.
Biol. Chem. 291:4742.

Note that the dcem() function can be slow to run on very large trajectories. In such cases you may want
to use multiple CPU cores for the calculation by setting the ‘ncore’ option to an appropriate value for your
computer - see help(dcem) for details.

11

View the correlations in pymol (see Figure 10).
pymol.dccm(cij, pdb, type = "launch")

Figure 10: Example of pymol.dccm() output for an MD trajectory

View the structure mapped network (see Figure 11).
vmd.cna(net, pdb, launch = TRUE)

As noted above, maximization of modularity sometimes creates unexpected community partitions splitting
visually obvious domains into many small community ‘islands’. In such cases we look into partitions with
modularity close to the maximal value but with an overall smaller number of communities (see above).

See Figure 12.
tree <- community.tree(net, rescale=TRUE)
plot(tree$num.of.comms, tree$modularity, xlab="Communities", ylab="Modularity")

Example function using community.tree() and network.amendment ()
mod.select <- function(x, thres=0.1) {

remodel <- community.tree(x, rescale = TRUE)

n.max = length(unique (x$communities$membership))

ind.max = which(remodel$num.of.comms == n.max)

v = remodel$modularity[length(remodel$modularity) :ind.max]

v = rev(diff(v))

fa = which(v>=thres) [1] - 1

ncomm = ifelse(is.na(fa), min(remodel$num.of.comms), n.max - fa)

ind <- which(remodel$num.of.comms == ncomm)
network.amendment (x, remodel$treel[ind, 1)

12

Figure 11: The vind.cna() output for the HIVpr example MD trajectory

04 05
»
&

=
T @ |
_3 o
3
o
= o |
o
_ o
g
g o
| | | | |
0 50 100 150 200

Communities

Figure 12: Network modularity for example HIVpr MD derived network. Note the two peaks in modularity
for this short trajectory.

13

nnet = mod.select(net)
nnet

See Figure 13.
plot(nnet, pdb)

Figure 13: Alternate community partition

See Figure 14.
vmd.cna(nnet, pdb, launch=TRUE)

Using a contact map filter:

In the original Luthey-Schulten and co-workers approach to correlation network analysis [1] edges were only
included between “in contact” nodes. Contacting nodes were defined as those having any heavy atom within
4.5 A for greater than 75% of the simulation. The weight of these contact edges was then taken from the
cross-correlation data. This approach effectively ignores long range correlations between residues that are
not in physical contact for the majority of the trajectory. To replicate this approach one can simply define
a contact map with the cmap() function and provide this to the cna() function along with the required
cross-correlation matrix, e.g.:

cm <- cmap(trj, dcut = 4.5, scut = 0, pcut = 0.75, mask.lower = FALSE)
net.cut <- cna(cij, cm = cm)

One could also simply multiple the correlation matrix by the contact map to zero out these long-range
correlations. However, we currently prefer not to use this filtering step as we have found that this approach
can remove potentially interesting correlations that might prove to be important for the types of long-range
coupling we are most interested in exploring. For example, compare the plot of correlation values below in
Figure 15 to those in Figure 4.

See Figure 15.
plot.dcem((cij * cm), main="")

14

Figure 14: The vimd.cna() output for the HIVpr example MD trajectory after modularity inspection

1.0

- 0.5

—- 0.0

Residue No.

1 T T T
1 50 100 150

Residue No.

Figure 15: Contact map filtered DCCM plot (compare to Figure 4)

15

Plot non-filtered DCCM
##tplot.dcem(cij, margin.segments = net$communities$membership)

It is also possible to use a consensus of contact map and dynamical correlation matrices from replica simulations
with the functions filter.cmap() and filter.dccmy() - see their respective help pages for further details.

Part II: Customized network visualization

We have already introduced the plot.cna() and vimd.cna() functions in earlier sections. Here we focus on
methods for customizing network layouts, colors, labels, nodes and edges for visualization.

The layout.cna() function can be used to determine the geometric center of protein residues and communities
and thus provide 3D and 2D network and community graph layouts that most closely match the protein
systems 3D coords.

layout3D <- layout.cna(net, pdb, k=3)
layout2D <- layout.cna(net, pdb, k=2)

Other network layout options are available via the igraph package, see Zigraph::layout in R for details.In
addition, one can provide any 2D plotting coordinate values to plot.cna() to generate alternate orientations.

Identifying nodes/communities and their composite residues

The identify.cna() function allows one to click on the nodes of a plot.cna() network plot to identify the
residues within a give set of nodes. This can also be a useful first step to determine the placement of text
labels for a plot -see help(identify.cna) for details.

Click with the right mouse to label, left button to ezxit.
xy <- plot.cna(net)
identify.cna(xy, cna = net)

Color settings and node/edge labels

The vimd__colors() function is used by default to define node color. This can be changed to any input color
vector as demonstrated below. Note that the vind__colors() function outputs a vector of colors that is
ordered as they are in the VMD molecular graphics program and changing the colors will likely break this
correspondence.

grp.col <- bwr.colors(20) [net$communities$membership]

Useful options in plot.cna() to be aware of include the optional flags ‘mark.groups’ and ‘mark.col’, which let
one draw and color areas around groups of residues corresponding to the community clustering or any other
residue partitioning of interest (see Figure 16):

grp.col <- list()

for (i in 1:max(net$communities$membership)) {
grp.tmp <- which(net$communities$membership == i)
grp.col[[i]] <- grp.tmp

}

16

colbar.full <- vmd_colors() [net$communities$membership]

colbar.comms <- vmd_colors(max(net$communities$membership), alpha = 0.5)

See Figure 16.

plot(net, pdb, full = TRUE, mark.groups = grp.col, mark.col = colbar.comms)

Figure 16: Example of mark.groups and mark.col options to the plot.cna() function. In this case adding
convex hulls that are colored according to communities.

Network manipulation
The prune.cna() function allows one to remove communities under a certain size or with less less than a
certain number of edges to other communities prior to visualization or further analysis. For example, to

remove communities composed of only 1 residue (see Figure 17):

net.pruned <- prune.cna(net, size.min = 2)

id size members
1 21 c(1:7, 95:102, 193:198)
2 2 8:9
3 24 c(10:23, 63:72)
4 4 24:27
5 47 c(28:62, 73:84)
6 1 85
#i 7 1 86
#it 8 1 87
9 2 88:89
10 5 90:94
11 5 103:107
12 26 c(108:122, 162:172)

17

13 6 123:128

14 44 c(129:161, 173:183)
15 2 184:185
16 1 186
17 2 187:188
18 4 189:192
Removing Nodes: 7, 8, 9, 16, 17, 6
id size edges members

6 1 1 85

7 1 0 86

8 1 0 87

9 2 0 88:89

16 1 0 186

17 2 0 187:188

See Figure 17.
plot.cna(net)
plot.cna(net.pruned)

16 18

Figure 17: Original (left) and pruned (right) networks

Applying this command to our network example, you can see how the communities composed by less than 2
residues are deleted from the graph.

Calculating network node centrality and suboptimal paths through the network.

Node centrality describes the distribution of the edges in the network. In protein-networks, identifying the
nodes with many edges (hubs) as well as the segments with a high number of connections can yield insights
into the internal dynamic coordination of protein regions. Centrality measures can also be employed to
characterize protein sections showing differences in coupled motions between networks derived from different
states (e.g. ligand bound and unbound etc.).

There are a number of different measures of node centrality, from the simplest one that counts the number of
edges of each node (node degree) to the more complex (such as betweenness centrality). For example, the

18

betweenness centrality of a node is defined as the number of unique-shortest paths crossing that node. This
measure has the advantage of considering the whole network topology and not only the closest neighbors in
its calculation (as is the case with node degree).

The igraph package provides different functions to perform these calculations (such as degree, betweenness
and closeness). Below we report an example output of the betweenness centrality on our simple HIVP
network:

node.betweenness <- betweenness(net$network)

See Figure 18.
plot(node.betweenness, xlab="Residue No", ylab="Centrality", type="h")

3
3
3 _
=
o
> 8]
% ™
T g
©]
o
o — ‘) ‘" |‘i|.....l||.|l||”|l|‘.l|| |||||I‘II||‘ L ||||...II‘"|.|||‘.I| l|||m |‘|||l..|.|.]l||l...l|. ‘..
I T T T |
0 50 100 150 200
Residue No

Figure 18: Betweenness centrality

Interestingly, in extended trajectories of this system the regions with the highest centrality values are the two
flaps of the HIVpr structure, whose dynamics and interactions are likely important of substrate processing. To
examine this for your own system you could map these values (or any other metric of interest) to the B-factor
column of a PDB file for viewing in VMD or other molecular graphics software that can color by this column:

Output a PDB file with normalized betweenness mapped to B-factor
write.pdb(pdb, b=normalize.vector(node.betweenness), file="tmp.pdb")

Suboptimal paths calculation. Identifying residues potentially involved in the dynamic coupling of distal
protein regions can be facilitated by calculating possible linking paths through the correlation network objects.
To run such an analysis, we can use the Bio3D function cnapath() and associated tools for printing and
visulization (summary.cnapath(), print.cnapath() and vind.cnapath()).

19

pa <- cnapath(net, from=32, to=131, k=50)

The ‘from’ and ‘to’ arguments in above function call represent the node IDs of the two ends (denoted by
‘source’ and ‘sink’; respectively) in the path anlaysis. The number of paths calculated is specified by the
argument ‘k’ (Here we explore 50 suboptimal paths).

Some basic statistics about the paths, including path length distribution and node degeneracy (number of
paths going through each node) can be obtained by using the function print() (or summary() for a similar
effect).

print (pa)

Number of paths in network(s):

50

##

Path length distribution:

#i#

[2.287,2.297] (2.297,2.306] (2.306,2.315] (2.315,2.324] (2.324,2.333]
4 6 13 12 15
##

Node degeneracy table:

#i

32 46 47 48 53 54 55 56 131 147 152 153 155

1.00 0.12 0.22 0.66 0.56 0.26 0.40 0.98 1.00 1.00 0.64 1.00 0.42

Or, simply type ’pa’
Compare two or more sets of paths
(e.g. from networks of the same system but under distinct states)

print (pal, pa2, ...)

Also generate plots for path length distribution and node degeneracy,; See Figure 19.
print(pa, label="HIVP", plot=TRUE)

Path Length Distributi Node Degeneracy

. - z

£ o | HIVP E o |

% = E{ =

o | — |

3.. o

& g &

o _ £ —

: 3

o o — o —
T T T 1 [N B B B
229 231 233 40 80 120 160

Path length Node no

Figure 19: Length distribution and node degeneracy in path analysis

To visulize paths use the function vimd.cnapath() (NOTE: you need VMD installed properly).

20

See Fig 20
vmd. cnapath(pa, pdb=pdb, spline=TRUE, col=’cyan’, launch=TRUE)

Figure 20: Visulization of suboptimal paths in a correlation network. Paths are represented as cyan
lines, and source/sink nodes are black spheres.

Side-note: Set spline=FALSE to get faster loading of paths in VMD. Also, set launch=FALSE if you
want to view paths later. To do that, load the two files generated by the function, ‘vind.cnapath.pdb’ and
‘vmd.cnapath.vind’, in VMD (Read VMD manual for more detailed instruction).

To view an example of the output obtained and how key residues involved in the allosteric signaling were
identified, please read the following work: Scarabelli and Grant, (2014). Kinesin-5 allosteric inhibitors uncouple
the dynamics of nucleotide, microtubule and neck-linker binding sites, Biophys J, 107, 2204-2213 and Yao, et
al., and Grant, (2016). Dynamic coupling and allosteric networks in the alpha subunit of heterotrimeric G
proteins. J Biol Chem, 291, 4742-4753.

Alternatively, suboptimal path analysis can be performed with the WISP program [8]. It is easy to interface
the protein network built using Bio3D with WISP to perform a search for the shortest paths between two
selected network nodes. WISP requires an input adjacency matrix of the network, which can be saved in a file
using the following command:

write.table(net$cij, quote=FALSE, row.names=FALSE, col.names=FALSE, file="adj.txt")

Summary

In this vignette we have confined ourselves to introducing relatively simple correlation network generation
protocols. However, the individual Bio3D functions for network analysis permit extensive customization of the
network generation procedure. For example, one can chose different node representations (including all heavy
atoms, residue center of mass, Calpha atoms for each residue, or collections of user defined atoms), different
correlation methods (including Pearson and mutual information), different community detection methods
(including Girvan-Newman betweenness, Random walk, and Greedy modularity optimization approaches), as
well as customized network layouts and result visualizations. We encourage users to explore these options and
provide feedback as appropriate.

Although the protocols detailed herein can provide compelling results in a number of cases, defining an optimal
procedure for network generation is an area of active research. For example rearrangement of some residues in

21

the communities and changes in the total number of communities may be observed among different community
structures based on different independent MD simulations of the same system. These variations of community
structures are partially due to the small changes in the calculated cij values that reflect statistical fluctuations
among independent simulations. However, changes in mutual information or correlation values may still be
relatively small and differences among independent community structures may be largely due to limitations of
the modularity metric, a methodology that was originally developed for binary adjacency matrices, where
edges are counted without taking into account their lengths. We are currently developing a modularity
methodology that is more closely aligned to protein dynamics data. We are also developing integrated 3D
viewing functions (so VMD and PyMol will no longer be absolutely required during the exploratory interactive
phase of analysis), as well as functionality to facilitate analysis of the interactions that generate changes in
the community network.

References

[1] Sethi A, Eargle J, Black AA, Luthey-Schulten Z. Proc Natl Acad Sci U S A.2009, 106(16):6620-5.
[2] Scarabelli G and Grant BJ, PLoS Comput Biol 9, €1003329.
[3] Yao X, Grant BJ, Biophys J 105, L08L10.

]

[4] Yao X, Malik RU, Griggs NW, Skjaerven L, Traynor JR, Sivaramakrishnan S, and Grant BJ, J Biol Chem
291, 4742-4753.

[5] Gasper PM, Fuglestad B, Komives EA, Markwick PR, McCammon JA. Proc Natl Acad Sci U S A. 2012
Dec 26:109(52):21216-22.

[6] Gédbor Csardi, Tamdas Nepusz. InterJournal Complex Systems, 1695, 2006.
[7] Girvan M, Newman ME. Proc Natl Acad Sci U S A. 2002 Jun 11;99(12):7821-6.
[8] Van Wart AT, Durrant J, Votapka L, Amaro RE. J. Chem. Theory Comput., 2014, 10 (2), pp 511-517.

Document Details

This document is shipped with the Bio3D package in both R and PDF formats. All code can be extracted
and automatically executed to generate Figures and/or the PDF with the following commands:

library (rmarkdown)
render("cna_vignette.R")

Information About the Current Bio3D Session

print(sessionInfo(), FALSE)

R version 3.4.1 (2017-06-30)

Platform: x86_64-redhat-linux-gnu (64-bit)
Running under: Cent0S Linux 7 (Core)

#it

Matrix products: default

BLAS/LAPACK: /usr/1ib64/R/1ib/libRblas.so

##
attached base packages:
[1] stats graphics grDevices utils datasets methods base

22

#it
#it
##
##
#it
#Hit
#it
##
##
##

other attached packages:
[1] igraph_1.1.1 bio3d_2.3-3 rmarkdown_1.5

loaded via a namespace (and not attached):

[1]
[5]
9]
[13]
[17]

Rcpp_0.12.13 lattice_0.20-35 digest_0.6.12

grid_3.4.1 backports_1.0.5 magrittr_1.5
highr 0.6 stringi_1.1.5 tools_3.4.1
yaml_2.1.14 parallel_3.4.1 compiler_3.4.1

htmltools_0.3.6 knitr_1.15.1

23

rprojroot_1.2
evaluate_0.10
stringr_1.2.0
pkgconfig_2.0.1

	Background:
	Part I: Basic network generation and visualization
	Network generation from normal mode analysis data
	The structure of cna() network objects
	The community clustering procedure
	Network generation from molecular dynamics data
	Using a contact map filter:

	Part II: Customized network visualization
	Identifying nodes/communities and their composite residues
	Color settings and node/edge labels
	Network manipulation
	Calculating network node centrality and suboptimal paths through the network.

	Summary
	References
	Document Details
	Information About the Current Bio3D Session

