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Background

Bio3D1 is an R package that provides interactive tools for the analysis of bimolecular structure,
sequence and simulation data. The aim of this document, termed a vignette2 in R parlance, is to
provide a brief task-oriented introduction to facilities for analyzing protein structure data with
Bio3D (Grant et al. 2006).

Requirements

Detailed instructions for obtaining and installing the Bio3D package on various platforms can be
found in the Installing Bio3D vignette available both online and from within the Bio3D package.
To see available vignettes use the command:

vignette(package="bio3d")

Note that to follow along with this vignette the MUSCLE multiple sequence alignment program
and the DSSP secondary structure assignment program must be installed on your system and in
the search path for executables. Please see the installation vignette for full details.

About this document

This vignette was generated using Bio3D version 2.1.0.

1 Getting Started

Start R, load the Bio3D package and use the command demo("pdb") and then demo("pca") to get
a quick feel for some of the tasks that we will be introducing in the following sections.

library(bio3d)
demo("pdb")
demo("pca")

Side-note: You will be prompted to hit the RETURN key at each step of the demos as this will
allow you to see the particular functions being called. Also note that detailed documentation and
example code for each function can be accessed via the help() and example() commands (e.g.
help(read.pdb)). You can also copy and paste any of the example code from the documentation
of a particular function, or indeed this vignette, directly into your R session to see how things work.
You can also find this documentation online.

1The latest version of the package, full documentation and further vignettes (including detailed installation
instructions) can be obtained from the main Bio3D website: http://thegrantlab.org/bio3d/

2This vignette contains executable examples, see help(vignette) for further details.
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1.1 Working with single PDB structures

The code snippet below calls the read.pdb() with a single input argument, the four letter Protein
Data Bank (PDB) identifier code "1tag". This will cause the read.pdb() function to read directly
from the online RCSB PDB database and return a new object pdb for further manipulation.

pdb <- read.pdb("1tag")

## Note: Accessing on-line PDB file
## HEADER GTP-BINDING PROTEIN 23-NOV-94 1TAG

Alternatively, you can read a PDB file directly from your local file system using the file name (or
the full path to the file) as an argument to read.pdb():

pdb <- read.pdb("myfile.pdb")
pdb<- read.pdb("/path/to/my/data/myfile.pdb")

A short summary of the pdb object can be obtained by simply calling the function print():

print(pdb)

##
## Call: read.pdb(file = "1tag")
##
## Total Models#: 1
## Total Atoms#: 2890, XYZs#: 8670 Chains#: 1 (values: A)
##
## Protein Atoms#: 2521 (residues/Calpha atoms#: 314)
##
## Non-protein Atoms#: 369 (residues: 342)
## Non-protein resid values: [GDP (1), HOH (340), MG (1) ]
##
## Sequence:
## ARTVKLLLLGAGESGKSTIVKQMKIIHQDGYSLEECLEFIAIIYGNTLQSILAIVRAMTT
## LNIQYGDSARQDDARKLMHMADTIEEGTMPKEMSDIIQRLWKDSGIQACFDRASEYQLND
## SAGYYLSDLERLVTPGYVPTEQDVLRSRVKTTGIIETQFSFKDLNFRMFDVGGQRSERKK
## WIHCFEGVTCIIFIAALSAYDMVLVEDDEVNRMHESLHLFNSICN...<cut>...DIII
##
## + attr: atom, helix, sheet, seqres, xyz,
## calpha, call

To examine the contents of the pdb object in more detail we can use the attributes function:

attributes(pdb)
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## $names
## [1] "atom" "helix" "sheet" "seqres" "xyz" "calpha" "call"
##
## $class
## [1] "pdb" "sse"

These attributes describe the list components that comprise the pdb object, and each individual
component can be accessed using the $ symbol (e.g. pdb$atom). Their complete description can be
found on the read.pdb() functions help page accessible with the command: help(read.pdb). Note
that the atom component is a data frame (matrix like object) consisting of all atomic coordinate
ATOM/HETATM data, with a row per ATOM and a column per record type. The column names
can be used as a convenient means of data access, for example to access coordinate data for the first
three atoms in our newly created pdb object:

pdb$atom[1:3, c("resno","resid","elety","x","y","z")]

## resno resid elety x y z
## 1 27 ALA N 38.24 18.02 61.23
## 2 27 ALA CA 38.55 16.71 60.58
## 3 27 ALA C 40.04 16.69 60.25

In the example above we used numeric indices to access atoms 1 to 3, and a character vector of
column names to access the specific record types. In a similar fashion the atom.select() function
returns numeric indices that can be used for accessing desired subsets of the pdb data. For example:

ca.inds <- atom.select(pdb, "calpha")

The returned ca.inds object is a list containing atom and xyz numeric indices corresponding to
the selection (all C-alpha atoms in this particular case). The indices can be used to access e.g. the
Cartesian coordinates of the selected atoms (pdb$xyz[, ca.inds$xyz]), or residue numbers and
B-factor data for the selected atoms. For example:

resnos <- pdb$atom[ca.inds$atom, "resno"]
bfacts <- pdb$atom[ca.inds$atom, "b"]
plot.bio3d(resnos,bfacts, sse=pdb, ylab="B-factor", xlab="Residue", typ="l")

In the above example we use these indices to plot residue number vs B-factor along with a basic
secondary structure schematic (provided with the argument sse=pdb; Figure 1). As a further
example of data access lets extract the sequence for the loop region (P-loop) between strand 3 (beta
1) and helix 1 in our pdb object.

loop <- pdb$sheet$end[3]:pdb$helix$start[1]
loop.inds <- atom.select(pdb, resno=loop, elety="CA")

##
## Build selection from input components
## * Selected a total of: 8 intersecting atoms *
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Figure 1: Residue B-factor data for PDB id 1TAG. Grey boxes depict secondary structure elements
in the structur (dark grey: alpha helices; light grey: beta sheets).

pdb$atom[loop.inds$atom, "resid"]

## [1] "LEU" "GLY" "ALA" "GLY" "GLU" "SER" "GLY" "LYS"

In the above example the residue numbers in the sheet and helix components of pdb are accessed
and used in a subsequent atom selection, the output of which is used as indices to extract residue
names.

Since Bio3D version 2.1 the xyz component in the PDB object is in a matrix format (as compared to
a vector format in previous versions). Thus, notice the extra comma in the square bracket operator
when accessing Cartesian coordinates from the xyz object (pdb$xyz[, ca.inds$xyz]).

Question: How would you extract the one-letter amino acid sequence for the loop region mentioned
above? HINT: The aa321() function converts between three-letter and one-letter IUPAC amino
acid codes.

Question: How would select all backbone or sidechain atoms? HINT: see the example section of
help(atom.select) and the string option.

Side-note: Consider using the help(combine.sel) function when dealing with more complicated
selections.
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1.2 Working with multiple PDB structures

The Bio3D package was designed to specifically facilitate the analysis of multiple structures from
both experiment and simulation. The challenge of working with these structures is that they are
usually different in their composition (i.e. contain differing number of atoms, sequences, chains,
ligands, structures, conformations etc. even for the same protein as we will see below) and it is
these differences that are frequently of most interest.

For this reason Bio3D contains extensive utilities to enable the reading and writing of sequence and
structure data, sequence and structure alignment, performing homologous protein searches, structure
annotation, atom selection, re-orientation, superposition, rigid core identification, clustering, torsion
analysis, distance matrix analysis, structure and sequence conservation analysis, normal mode
analysis across related structures, and principal component analysis of structural ensembles. We
will demonstrate some of these utilities in the following sections and in other package vignettes.
However, before delving into more advanced analysis lets examine how we can read multiple PDB
structures from the RCSB PDB for a particular protein and perform some basic analysis:

# Download some example PDB files
ids <- c("1TND_B","1AGR_A","1FQJ_A","1TAG_A","1GG2_A","1KJY_A")
raw.files <- get.pdb(ids)

The get.pdb() function will download the requested files, below we extract the particular chains we
are most interested in with the function pdbsplit() (note these ids could come from the results of
a blast.pdb() search as described in subsequent sections). The requested chains are then aligned
and their structural data stored in a new object pdbs that can be used for further analysis and
manipulation.

# Extract and align the chains we are interested in
files <- pdbsplit(raw.files, ids)
pdbs <- pdbaln(files)

Below we examine the sequence and structural similarity.

# Calculate sequence identity
pdbs$id <- substr(basename(pdbs$id),1,6)
seqidentity(pdbs)

## 1TND_B 1AGR_A 1FQJ_A 1TAG_A 1GG2_A 1KJY_A
## 1TND_B 1.000 0.693 0.914 1.000 0.690 0.696
## 1AGR_A 0.693 1.000 0.779 0.694 0.997 0.994
## 1FQJ_A 0.914 0.779 1.000 0.914 0.776 0.782
## 1TAG_A 1.000 0.694 0.914 1.000 0.691 0.697
## 1GG2_A 0.690 0.997 0.776 0.691 1.000 0.991
## 1KJY_A 0.696 0.994 0.782 0.697 0.991 1.000
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## Calculate RMSD
rmsd(pdbs, fit=TRUE)

## [,1] [,2] [,3] [,4] [,5] [,6]
## [1,] 0.000 0.965 0.609 1.283 1.612 2.100
## [2,] 0.965 0.000 0.873 1.575 1.777 1.914
## [3,] 0.609 0.873 0.000 1.265 1.737 2.042
## [4,] 1.283 1.575 1.265 0.000 1.687 1.841
## [5,] 1.612 1.777 1.737 1.687 0.000 1.879
## [6,] 2.100 1.914 2.042 1.841 1.879 0.000

Question: What effect does setting the fit=TRUE option have in the RMSD calculation? What
would the results indicate if you set fit=FALSE or disparaged this option? HINT: Bio3D functions
have various default options that will be used if the option is not explicitly specified by the user, see
help(rmsd) for an example and note that the input options with an equals sign (e.g. fit=FALSE)
have default values.

1.3 Exploring example data for the transducin heterotrimeric G Protein

A number of example datasets are included with the Bio3D package. The main purpose of including
this data (which may be generated by the user by following the extended examples documented
within the various Bio3D functions) is to allow users to more quickly appreciate the capabilities of
functions that would otherwise require extensive data downloads before execution.

For a number of the examples in the current vignette we will utilize the included transducin dataset
that contains over 50 publicly available structures. This dataset formed the basis of the work
described in (Yao and Grant 2013) and we refer the motivated reader to this publication and
references therein for extensive background information. Briefly, heterotrimeric G proteins are
molecular switches that turn on and off intracellular signaling cascades in response to the activation
of G protein coupled receptors (GPCRs). Receptor activation by extracellular stimuli promotes a
cycle of GTP binding and hydrolysis on the G protein alpha subunit that leads to conformational
rearrangements (i.e. internal structural changes) that activate multiple downstream effectors. The
current dataset consists of transducin (including Gt and Gi/o) alpha subunit sequence and structural
data and can be loaded with the command data(transducin):

data(transducin)
attach(transducin)

Side-note: This dataset can be assembled from scratch with commands similar to those detailed in
the next section and those listed in section 2.2. Also see help(example.data) for a full description
of this datasets contents.

7



2 Constructing Experimental Structure Ensembles for a Protein
Family

Comparing multiple structures of homologous proteins and carefully analyzing large multiple
sequence alignments can help identify patterns of sequence and structural conservation and highlight
conserved interactions that are crucial for protein stability and function (Grant et al. 2007). Bio3D
provides a useful framework for such studies and can facilitate the integration of sequence, structure
and dynamics data in the analysis of protein evolution.

2.1 Finding Available Sets of Similar Structures

In this tutorial, to collect available transducin crystal structures, we first use BLAST to query the
PDB database to find similar sequences (and hence structures) to our chosen representative (PDB
ID “1tag”):

pdb <- read.pdb("1tag")
seq <- pdbseq(pdb)
blast <- blast.pdb(seq)

Examining the alignment scores and their associated E-values (with the function plot.blast())
indicates a sensible normalized score (-log(E-Value)) cutoff of 240 bits (Figure 2).

hits <- plot.blast(blast, cutoff=240)

## * Possible cutoff values: 247 -1
## Yielding Nhits: 100 241
##
## * Chosen cutoff value of: 240
## Yielding Nhits: 100

We can then list a subset of our top hits, for example:

head(hits$hits)

## pdb.id gi.id group
## 1 "1TND_A" "576308" "1"
## 2 "1TND_B" "576309" "1"
## 3 "1TND_C" "576310" "1"
## 4 "1TAD_A" "1065261" "1"
## 5 "1TAD_B" "1065262" "1"
## 6 "1TAD_C" "1065263" "1"

head(hits$pdb.id)

## [1] "1TND_A" "1TND_B" "1TND_C" "1TAD_A" "1TAD_B" "1TAD_C"
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Figure 2: Summary of BLAST results for query 1tag against the PDB chain database
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Sidenote: The function pdb.annotate() can fetch detailed information about the corresponding
structures (e.g. title, experimental method, resolution, ligand name(s), citation, etc.). For example:

anno <- pdb.annotate(hits$pdb.id)
head(anno[, c("resolution", "ligandId", "citation")])

## resolution ligandId citation
## 1TND_A 2.2 CAC,GSP,MG Noel et al. Nature (1993)
## 1TND_B 2.2 CAC,GSP,MG Noel et al. Nature (1993)
## 1TND_C 2.2 CAC,GSP,MG Noel et al. Nature (1993)
## 1TAD_A 1.7 ALF,CA,CAC,GDP Sondek et al. Nature (1994)
## 1TAD_B 1.7 ALF,CA,CAC,GDP Sondek et al. Nature (1994)
## 1TAD_C 1.7 ALF,CA,CAC,GDP Sondek et al. Nature (1994)

2.2 Multiple Sequence Alignment

Next we download the complete list of structures from the PDB (with function get.pdb()), and
use function pdbsplit() to split the structures into separate chains and store them for subsequent
access. Finally, function pdbaln() will extract the sequence of each structure and perform a multiple
sequence alignment to determine residue-residue correspondences (NOTE: requires external program
MUSCLE be in search path for executables):

unq.ids <- unique(substr(hits$pdb.id, 1, 4) )
# Download and chain split PDBs
raw.files <- get.pdb(unq.ids, path="raw_pdbs")
files <- pdbsplit(raw.files, ids=hits$pdb.id, path="raw_pdbs/split_chain")

# Extract and align sequences
pdbs <- pdbaln(files)

You can now inspect the alignment (the automatically generated “aln.fa” file) with your favorite
alignment viewer (we recommend SEAVIEW, available from: http://pbil.univ-lyon1.fr/software/
seaview.html).

Side-note: You may find a number of structures with missing residues (i.e. gaps in the alignment)
at sites of particular interest to you. If this is the case you may consider removing these structures
from your hit list and generating a smaller, but potentially higher quality, dataset for further
exploration.

Question: How could you automatically identify gap positions in your alignment? HINT: try the
command help.search("gap", package="bio3d").
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3 Comparative Structure Analysis

The detailed comparison of homologous protein structures can be used to infer pathways for
evolutionary adaptation and, at closer evolutionary distances, mechanisms for conformational
change. The Bio3D package employs both conventional methods for structural analysis (alignment,
RMSD, difference distance matrix analysis, etc.) as well as refined structural superposition and
principal component analysis (PCA) to facilitate comparative structure analysis.

3.1 Structure Superposition

Conventional structural superposition of proteins minimizes the root mean square difference between
their full set of equivalent residues. This can be performed with Bio3D functions pdbfit() and
fit.xyz as outlined previously. However, for certain applications such a superposition procedure
can be inappropriate. For example, in the comparison of a multi-domain protein that has undergone
a hinge-like rearrangement of its domains, standard all atom superposition would result in an
underestimate of the true atomic displacement by attempting superposition over all domains (whole
structure superposition). A more appropriate and insightful superposition would be anchored at the
most invariant region and hence more clearly highlight the domain rearrangement (sub-structure
superposition).

The Bio3D core.find() function implements an iterated superposition procedure, where residues
displaying the largest positional differences are identified and excluded at each round. The function
returns an ordered list of excluded residues, from which the user can select a subset of ’core’ residues
upon which superposition can be based.

core <- core.find(pdbs)

The plot.core() and print.core() functions allow one to further examine the output of the
core.find() procedure (see below and Figure 3).

col=rep("black", length(core$volume))
col[core$volume<2]="pink"; col[core$volume<1]="red"
plot(core, col=col)

The print.core() function also returns atom and xyz indices similar to those returned from the
atom.select() function. Below we use these indices for core superposition and to write a quick
PDB file for viewing in a molecular graphics program such as VMD (Figure 4).

core.inds <- print(core, vol=1.0)

## # 88 positions (cumulative volume <= 1 Angstrom^3)
## start end length
## 1 32 52 21
## 2 195 195 1
## 3 216 226 11
## 4 239 239 1
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Figure 3: Identification of core residues

## 5 242 247 6
## 6 260 274 15
## 7 279 279 1
## 8 282 283 2
## 9 295 304 10
## 10 317 336 20

write.pdb(xyz=pdbs$xyz[1,core.inds$xyz], file="quick_core.pdb")

We can now superpose all structures on the selected core indices with the fit.xyz() or pdbfit()
function.

xyz <- pdbfit( pdbs, core.inds )

The above command performs the actual superposition and stores the new coordinates in the matrix
object xyz.

Side-note: By providing an extra outpath="somedir" argument to pdbfit the superposed
structures can be output for viewing (in this case to the local directory somedir which you can
obviously change). These fitted structures can then be viewed in your favorite molecular graphics
program (Figure 5).
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Figure 4: The most structural invariant core positions in the transducin family

Figure 5: Structure ensemble of transducin family superposed based on core positions
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3.2 Standard Structural Analysis

Bio3D contains functions to perform standard structural analysis, such as root mean-square deviation
(RMSD), root mean-square fluctuation (RMSF), secondary structure, dihedral angles, difference
distance matrices etc. The current section provides a brief exposure to using Bio3D in this vein.
However, do feel free to skip ahead to the arguably more interesting section on PCA analysis.

Root mean square deviation (RMSD): RMSD is a standard measure of structural distance
between coordinate sets. Here we examine the pairwise RMSD values and cluster our structures
based on these values:

rd <- rmsd(xyz)
hist(rd, breaks=40, xlab="RMSD (Å)", main="Histogram of RMSD")
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Figure 6: Histogram of RMSD among transducin structures

# RMSD clustering
hc.rd <- hclust(as.dist(rd))

The result can be illustrated as a simple dendrogram with the command:
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pdbs$id <- substr(basename(pdbs$id), 1, 6)
hclustplot(hc.rd, colors=annotation[, "color"], labels=pdbs$id, cex=0.5, ylab="RMSD (Å)",

main="RMSD Cluster Dendrogram", fillbox=FALSE)

RMSD Cluster Dendrogram

R
M

S
D

 (
Å

)

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

4G
5Q

_D
4G

5O
_D

4G
5R

_A
4G

5Q
_A

4G
5O

_A
3O

N
W

_B
1K

JY
_C

2O
M

2_
C

3Q
I2

_A
3Q

I2
_B

2X
N

S
_A

2X
N

S
_B

3O
N

W
_A

1K
JY

_A
2O

M
2_

A
3V

00
_B

3V
00

_C
3V

00
_A

1G
IT

_A
1A

S
2_

A
1G

O
T

_A
1G

P
2_

A
1G

G
2_

A
1A

S
0_

A
1S

V
S

_A
2Z

JY
_A

1S
V

K
_A

3F
FA

_A
1G

F
I_

A
1G

IA
_A

1G
IL

_A
1C

IP
_A

1B
H

2_
A

3C
7K

_C
1T

N
D

_A
1T

N
D

_B
1T

N
D

_C
1T

A
D

_A
1T

A
D

_B
1T

A
D

_C
1F

Q
K

_A
1F

Q
K

_C
1F

Q
J_

A
1F

Q
J_

D
2I

H
B

_A
2O

D
E

_A
2O

D
E

_C
2V

4Z
_A

2G
T

P
_B

1A
G

R
_A

1A
G

R
_D

1T
A

G
_A

3Q
E

0_
B

Figure 7: RMSD clustering of transducin structures

Question: How many structure groups/clusters do we have according to this clustering? How
would determine which structures are assigned to which cluster? HINT: See help(cutree).

Question: What kind of plot would the command heatmap(rd) produce? How would you label
this plot with PDB codes? HINT: labCol and labRow.

Root mean squared fluctuations (RMSF): RMSF is another often used measure of confor-
mational variance. The Bio3D rmsf() function returns a vector of atom-wise (or residue-wise)
variance instead of a single numeric value. The below sequence of commands returns the indices for
gap containing positions, which we then exclude from subsequent RMSF calculation:

# Ignore gap containing positions
gaps.res <- gap.inspect(pdbs$ali)
gaps.pos <- gap.inspect(pdbs$xyz)

# Plot loadings in relation to reference structure "1TAG"
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# Annotate SSE with renumbered residue indices
sse <- dssp(pdb, resno=FALSE)
ind <- grep("1TAG", pdbs$id)
res.ref <- which(!is.gap(pdbs$ali[ind,]))
res.ind <- which(res.ref %in% gaps.res$f.ind)

rf <- rmsf(xyz[, gaps.pos$f.inds])
plot.bio3d(res.ind, rf, sse=sse, ylab="RMSF (Å)", xlab="Position", typ="l")
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Figure 8: RMSF plot

Torsion/Dihedral analysis: The conformation of a polypeptide or nucleotide chain can be
usefully described in terms of angles of internal rotation around its constituent bonds.

tor <- torsion.pdb(pdb)

# basic Ramachandran plot
plot(tor$phi, tor$psi, xlab="phi", ylab="psi")

Lets compare the Calpha atom based pseudo-torsion angles between two structures:
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Figure 9: Basic Ramachandran plot

ind.a <- grep("1TAG_A", pdbs$id)
ind.b <- grep("1TND_B", pdbs$id)

a.xyz <- pdbs$xyz[ind.a,]
b.xyz <- pdbs$xyz[ind.b,]

gaps2.xyz <- is.gap(pdbs$xyz[ind.a,])
gaps2.res <- is.gap(pdbs$ali[ind.a,])
resno <- pdbs$resno[ind.a, !gaps2.res]

a <- torsion.xyz(a.xyz[!gaps2.xyz],atm.inc=1)
b <- torsion.xyz(b.xyz[!gaps2.xyz],atm.inc=1)
d.ab <- wrap.tor(a-b)

# Annotate SSE with original PDB numbers
sse2 <- dssp(read.pdb("1tag"))

## Note: Accessing on-line PDB file
## HEADER GTP-BINDING PROTEIN 23-NOV-94 1TAG

plot.bio3d(resno, abs(d.ab), typ="h", sse=sse2, xlab="Residue", ylab="Angle")
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Figure 10: Torsion angle difference between structures in GDP (1tag) and GTP (1tnd) nucleotide
states

Difference distance matrix analysis (DDM) Distance matrices can be calculated with the
function dm() and contact maps with the function cmap(). In the example below we calculate
the difference distance matrix by simply subtracting one distance matrix from another. Note the
vectorized nature of the this calculation (i.e. we do not have to explicitly iterate through each
element of the matrix):

a <- dm(a.xyz[!gaps2.xyz])
b <- dm(b.xyz[!gaps2.xyz])

plot( (a - b), nlevels=10, grid.col="gray", resnum.1=resno,
resnum.2=resno, xlab="1tag", ylab="1tnd (positions relative to 1tag)")

Question: Can you think of the pros and cons of these different analysis methods?

4 Principal Component Analysis (PCA)

Following core identification and subsequent superposition, PCA can be employed to examine the
relationship between different structures based on their equivalent residues. The application of PCA
to both distributions of experimental structures and molecular dynamics trajectories, along with its
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ability to provide considerable insight into the nature of conformational differences is also discussed
in the molecular dynamics trajectory analysis vignette.

Briefly, the resulting principal components (orthogonal eigenvectors) describe the axes of maximal
variance of the distribution of structures. Projection of the distribution onto the subspace defined
by the largest principal components results in a lower dimensional representation of the structural
dataset. The percentage of the total mean square displacement (or variance) of atom positional fluc-
tuations captured in each dimension is characterized by their corresponding eigenvalue. Experience
suggests that 3–5 dimensions are often sufficient to capture over 70 percent of the total variance in a
given family of structures. Thus, a handful of principal components are sufficient to provide a useful
description while still retaining most of the variance in the original distribution (Grant et al. 2006).

The below command excludes the gap positions identified above from the PCA with the pca.xyz()
command.

# Do PCA
pc.xray <- pca.xyz(xyz[, gaps.pos$f.inds])

Question: Why is the input to function pca.xyz() given as xyz rather than pdbs$xyz?

Question: Why would you need superposition before using pca.xyz but not need it for pca.tor?

A quick overview of the results of pca.xyz() can be obtained by calling plot.pca() (Figure 12).

plot(pc.xray, col=annotation[, "color"])

We can also call plot.bio3d() to examine the contribution of each residue to the first three principal
components with the following commands (Figure 13).

par(mfrow = c(3, 1), cex = 0.6, mar = c(3, 4, 1, 1))
plot.bio3d(res.ind, pc.xray$au[,1], sse=sse, ylab="PC1 (A)")
plot.bio3d(res.ind, pc.xray$au[,2], sse=sse, ylab="PC2 (A)")
plot.bio3d(res.ind, pc.xray$au[,3], sse=sse, ylab="PC3 (A)")
par(op)

The plots in Figures 12 and 13 display the relationships between different conformers, highlight
positions responsible for the major differences between structures and enable the interpretation and
characterization of multiple interconformer relationships.

To further aid interpretation, a PDB format trajectory can be produced that interpolates between the
most dissimilar structures in the distribution along a given principal cmponent. This involves dividing
the difference between the conformers into a number of evenly spaced steps along the principal
components, forming the frames of the trajectory. Such trajectories can be directly visualized in a
molecular graphics program, such as VMD (Humphrey 1996) (Figure 14). Furthermore, the PCA
results can be compared to those from simulations (see the molecular dynamics and normal mode
analysis vignettes), as well as guiding dynamic network analysis, being analyzed for possible domain
and shear movements with the DynDom package (Hayward and Berendsen 1998), or used as initial
seed structures for reaction path refinement methods such as Conjugate Peak Refinement (Fischer
and Karplus 1992).
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Figure 12: Overview of PCA results for transducin crystallographic structures
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Figure 13: Contribution of each residue to the first three principal components
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mktrj.pca(pc.xray, pc=1, file="pc1.pdb")

Figure 14: Interpolated structures along PC1 produced by the mktrj.pca() function

4.1 Conformer Clustering in PC Space

Clustering structures in PC space can often enable one to focus on the relationships between
individual structures in terms of their major structural displacements, with a controllable the level
of dynamic details (via specifying the number of PCs used in the clustering). For example, with
clustering along PCs 1 and 2, we can investigate how the X-ray structures of transducin relate to
each other with respect to the major conformation change that covers over 65% structural variance
(See Figures 12 and 15). This can reveal functional relationships that are often hard to find by
conventional pairwise methods such as the RMSD clustering detailed previously. For example in the
PC1-PC2 plane, the inactive “GDP” structures (green points in Figure 12) are further split into
two sub-groups (Figures 15 and 16). The bottom-right sub-group (blue) exclusively correspond to
the structures complexed with GDP dissociation inhibitor (GDI). This is clearly evident in the PC
plot and clustering dendrogram that can be generated with the following commands:

hc <- hclust(dist(pc.xray$z[,1:2]))
grps <- cutree(hc, h=30)
cols <- c("red", "green", "blue")[grps]
plot(pc.xray$z[, 1:2], typ="p", pch=16, col=cols, xlab="PC1", ylab="PC2")

# Dendrogram plot
names(cols) <- pdbs$id
hclustplot(hc, colors=cols, ylab="Distance in PC Space", main="PC1-2", fillbox=FALSE)

23



−10 0 10 20 30

−
10

0
10

20

PC1

P
C

2

Figure 15: Clustering based on PC1-PC2

Sidenote: On the PC1 vs PC2 conformer plot in Figure 15 you can interactively identify and
label individual structures by using the identify() function clicking with your mouse (left to select,
right to end). In this particular case the command would be:

identify(pc.xray$z[,1], pc.xray$z[,2], labels=pdbs$id)

Question: Which clustering appears to be most informative, that based on RMSD or that based
on PCA? Why might this be the case? HINT: It can be useful to think of PCA as a filter for large
scale conformational changes.

Question: Can you find a Bio3D function that would allow you to compare the different clustering
results?

5 Where to Next

If you have read this far, congratulations! We are ready to have some fun and move to other
package vignettes that describe more interesting analysis including Correlation Network Analysis
(where we will build and dissect dynamic networks form different correlated motion data), enhanced
methods for Normal Mode Analysis (where we will explore the dynamics of large protein families
and superfamilies using predictive calculations), and advanced Comparative Structure Analysis
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Figure 16: Clustering based on PC1-PC2
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(where we will mine available experimental data and supplement it with simulation results to map
the conformational dynamics and coupled motions of proteins).

Document Details

This document is shipped with the Bio3D package in both R and PDF formats. All code can
be extracted and automatically executed to generate Figures and/or the PDF with the following
commands:

library(rmarkdown)
render("Bio3D_nma.Rmd", "all")

Information About the Current Bio3D Session

sessionInfo()

## R version 3.1.1 (2014-07-10)
## Platform: x86_64-redhat-linux-gnu (64-bit)
##
## locale:
## [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
## [3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
## [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
## [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
## [9] LC_ADDRESS=C LC_TELEPHONE=C
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
##
## attached base packages:
## [1] stats graphics grDevices utils datasets methods base
##
## other attached packages:
## [1] XML_3.98-1.1 RCurl_1.95-4.1 bitops_1.0-6 bio3d_2.1-0
## [5] rmarkdown_0.3.3
##
## loaded via a namespace (and not attached):
## [1] codetools_0.2-8 digest_0.6.3 evaluate_0.5.5 formatR_1.0
## [5] htmltools_0.2.6 knitr_1.6 stringr_0.6.2 tools_3.1.1
## [9] yaml_2.1.13
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