Enhanced Normal Modes Analysis with Bio3D

Lars Skjaerven, Xin-Qiu Yao, Guido Scarabelli & Barry J. Grant

September 27, 2014

Contents

Background
Requirements . . . . . . . . ... Lo o

About this document . . . . . . . . . ..o

1 Example 1: Basic Normal Mode Analysis
1.1 Example 1A: Normal mode calculation . . . . . ... ...
1.2 Example 1B: Specifying a force field . . . .. .. ... ..
1.3 Example 1C: Normal mode analysis of the GroEL subunit

2 Example 2: Ensemble normal mode analysis
2.1 Example 2A: Dihydrofolate reductase . . . ... ... ..
2.2 Example 2B: Transducin . . . . . . . ... ... ......

3 Example 3: Variance weighted normal mode analysis
3.1 Example 3A: GroEL . . . . ... ... ... ... ...
3.2 Example 3B: Transducin . . . . . . . ... ... ... ...

4 Example 4: User-defined pair force constant functions
4.1 Example 4A: Specifying a simple function . . . . . .. ..
4.2  Example 4B: Specific force constants for disulfide bridges

Document Details
Information About the Current Bio3D Session

References

12
15
17

18
18
26

27
28
28

30

30

30



This document provides Supporting Information S1 for Integrating protein structural dynamics
and evolutionary analysis with Bio3D.

Background

Bio3D! is an R package that provides interactive tools for structural bioinformatics . The primary
focus of Bio3D is the analysis of biomolecular structure, sequence and simulation data (Grant et al.
2006).

Normal mode analysis (NMA) is one of the major simulation techniques used to probe large-scale
motions in biomolecules. Typical application is for the prediction of functional motions in proteins.
Version 2.0 of the Bio3D package now includes extensive NMA facilities. These include a unique
collection of multiple elastic network model (ENM) force-fields (see Example 1 below), automated
ensemble analysis methods (Example 2), variance weighted NMA (Example 3), and NMA with
user-defined force fields (Example 4). Here we demonstrate the use of these new features with
working code that comprise complete executable examples?.

Requirements

Detailed instructions for obtaining and installing the Bio3D package on various platforms can be
found in the Installing Bio3D Vignette available both on-line and from within the Bio3D package.
In addition to Bio3D the MUSCLE multiple sequence alignment program (available from the muscle
home page) must be installed on your system and in the search path for executables. Please see the
installation vignette for further details.

About this document

This vignette was generated using Bio3D version 2.1.0.

1 Example 1: Basic Normal Mode Analysis

1.1 Example 1A: Normal mode calculation

Normal mode analysis (NMA) of a single protein structure can be carried out by providing a PDB
object to the function nma(). In the code below we first load the Bio3D package and then download
an example structure of hen egg white lysozyme (PDB id 1hel) with the function read.pdb().
Finally the function nma() is used perform the normal mode calculation:

library(bio3d)
pdb <- read.pdb("lhel")

!The latest version of the package, full documentation and further vignettes (including detailed installation
instructions) can be obtained from the main Bio3D website: http://thegrantlab.org/bio3d/.
2This vignette contains executable examples, see help(vignette) for further details.


http://thegrantlab.org/bio3d/tutorials
http://www.drive5.com/muscle/
http://www.drive5.com/muscle/
http://thegrantlab.org/bio3d/
http://thegrantlab.org/bio3d/

##  Note: Accessing on-line PDB file
##  HEADER HYDROLASE (0-GLYCOSYL) 10-JAN-92  1HEL

modes <- nma(pdb)

## Building Hessian... Done in 0.054 seconds.
## Diagonalizing Hessian... Done in 0.111 seconds.

A short summary of the returned nma object contained within the new variable modes can be
obtained by simply calling the function print():

print (modes)

##

## Call:

##  nma.pdb(pdb = pdb)

##

## Class:

## VibrationalModes (mma)
#it

## Number of modes:
## 387 (6 trivial)

##

## Frequencies:

#it Mode 7: 0.018

##  Mode 8: 0.019

##  Mode 9: 0.024

## Mode 10: 0.025

##  Mode 11: 0.028

## Mode 12: 0.029

##

## + attr: modes, frequencies, force.constants, fluctuations,
#i#t U, L, xyz, mass, temp, triv.modes, natoms, call

This reveals the function call resulting in the nma object along with the total number of stored
normal modes. For PDB id 1hel there are 129 amino acid residues, and thus 387 modes (3129 = 387)
in this object. The first six modes are so-called trivial modes with zero frequency and correspond to
rigid-body rotation and translation. The frequency of the next six lowest-frequency modes is also
printed.

Note that the returned nma object consists of a number of attributes listed on the +attr: line.
These attributes contain the detailed results of the calculation and their complete description can
be found on the nma() functions help page accessible with the command: help(nma). To get a
quick overview of the results one can simply call the plot() function on the returned nma object.
This will produce a summary plot of (1) the eigenvalues, (2) the mode frequencies, and (3) the
atomic fluctuations (See Figure 1).



plot(modes, sse=pdb)

Eigenvalues Frequencies
. -
S ] 8
— o
o <
| i - d
o | ..m||||I||||||||||||||||““““N““ 8 _ ||||““““
© 7 | | | | | oS T | | | | |
0 20 40 60 80 0 20 40 60 80
Mode index Mode index
Fluctuations
@« — ———
o
-
o
o | |||||||||||||||||||””IIH||||||||||||||I|H‘ ||||||||||I|||||||H‘ |||||||u11u||\|||n||||||||‘HUHJU¢MI\ HM“
© | | | | | | |
0 20 40 60 80 100 120

Residue index

Figure 1: Summary plot of NMA results for hen egg white lysozyme (PDB id 1hel). The optional
sse=pdb argument provided to plot.nma() results in a secondary structure schematic being added
to the top and bottom margins of the fluctuation plot (helices black and strands gray). Note the
larger fluctuations predicted for loop regions.

1.2 Example 1B: Specifying a force field

The main Bio3D normal mode analysis function, nma(), requires a set of coordinates, as obtained
from the read.pdb() function, and the specification of a force field describing the interactions
between constituent atoms. By default the calpha force field originally developed by Konrad Hinsen
is utilized (Hinsen et al. 2000). This employs a spring force constant differentiating between
nearest-neighbor pairs along the backbone and all other pairs. The force constant function was
parameterized by fitting to a local minimum of a crambin model using the AMBER94 force field.
However, a number of additional force fields are also available, as well as functionality for providing
customized force constant functions. Full details of available force fields can be obtained with the
command help(load.enmff). With the code below we briefly demonstrate their usage along with
a simple comparison of the modes obtained from two of the most commonly used force fields:



help(load.enmff)

# Calculate modes with various force fields
modes.a <- nma(pdb, ff="calpha")

modes.b <- nma(pdb, ff="anm"

modes.c <- nma(pdb, ff="pfanm")
modes.d <- nma(pdb, ff="reach")
modes.e <- nma(pdb, ff="sdenm")

# Root mean square inner product (RMSIP)
r <- rmsip(modes.a, modes.b)

plot(r, xlab="ANM", ylab="C-alpha FF")

RMSIP: 0.8

10

LL
LL
© © —
=
o
; i
@)
q-_
N_

ANM

Figure 2: Analysis of mode similarity between modes obtained from the ANM and calpha force
fields by calculating mode overlap and root mean square inner product (RMSIP) with function
rmsip(). An RMSIP value of 1 depicts identical directionality of the two mode subspaces.

1.3 Example 1C: Normal mode analysis of the GroEL subunit

Bio3D includes a number of functions for analyzing and visualizing the normal modes. In the
example below we illustrate this functionality on the GroEL subunit. GroEL is a multimeric protein



consisting of 14 identical subunits organized in three distinct domains inter-connected by two hinge
regions facilitating large conformational changes.

We will investigate the normal modes through (1) mode visualization to illustrate the nature of the
motions; (2) cross-correlation analysis to determine correlated regions; (3) deformation analysis
to measure the local flexibility of the structure; (4) overlap analysis to determine which modes
contribute to a given conformational change; and (5) domain analysis to identify regions of the
protein moving as rigid parts.

1.3.1 Calculate the normal modes

In the code below we download a structure of GroEL (PDB-id Isz4) and use atom.select() to
select one of the 14 subunits prior to the call to nma():

# Download PDB, calcualte normal modes of the open subunit
pdb.full <- read.pdb("1sx4")

pdb.open  <- trim.pdb(pdb.full, atom.select(pdb.full, chain="A"))
modes <- nma(pdb.open)

1.3.2 Mode visualization

With Bio3D you can visualize the normal modes either by generating a trajectory file which can
be loaded into a molecular viewer program (e.g. VMD or PyMOL), or through a vector field
representation in PyMOL. Both functions, mktrj.nma() and view.modes(), takes an nma object
as input in addition to the mode index specifying which mode to visualize:

# Make a PDB trajectory
mktrj(modes, mode=7)

# Vector field representation (see Figure 3.)
view.modes (modes, mode=7)

1.3.3 Cross-correlation analysis

Function dccm.nma() calculates the cross-correlation matrix of the nma object. Function
plot.dccm() will draw a correlation map, and 3D visualization of correlations is provided through
function view.dccmy():

# Calculate the cross—-correlation matriz
cm <- dccm(modes)

# Plot a correlation map with plot.dcem(cm)
plot(cm, sse=pdb.open, contour=F, col.regions=bwr.colors(20), at=seq(-1,1,0.1) )



Figure 3: Visualization of the first non-trivial mode of the GroEL subunit. Visualization is provided
through a trajectory file (left), or vector field representation (right).



Residue Cross Correlation

1.0
500
400 0.5
2
% 300
S - 0.0
(%]
&)
@ 200
-0.5
100
-1.0

100 200 300 400 500

Residue No.

Figure 4: Correlation map revealing correlated and anti-correlated regions in the protein structure.



# View the correlations in the structure (see Figure 5.)
view.dccm(cm, pdb.open, launch=TRUE)

Figure 5: Correlated (left) and anti-correlated (right) residues depicted with red and blue lines,
respectively. The figures demonstrate the output of function view.dccmy().

1.3.4 Fluctuation and Deformation analysis

Deformation analysis provides a measure for the amount of local flexibility in the protein structure -
i.e. atomic motion relative to neighboring atoms. It differs from fluctuations (e.g. RMSF values)
which provide amplitudes of the absolute atomic motion. Below we calculate deformation energies
(with deformation.nma()) and atomic fluctuations (with fluct.nma()) of the first three modes
and visualize the results in PyMOL:

# Deformation energies
defe <- deformation.nma(modes)
defsums <- rowSums(defe$eil,1:3])

# Fluctuations
flucts <- fluct.nma(modes, mode.inds=seq(7,9))



# Write to PDB files (see Figure 6.)
write.pdb(pdb=NULL, xyz=modes$xyz, file="R-defor.pdb", b=defsums)
write.pdb(pdb=NULL, xyz=modes$xyz, file="R-fluct.pdb", b=flucts)

Figure 6: Atomic fluctuations (left) and deformation energies (right) visualized in PyMOL.

1.3.5 Overlap analysis

Finally, we illustrate overlap analysis to compare a conformational difference vector with the normal
modes to identify which modes contribute to a given conformational change (i.e. the difference
between the open and closed state of the GroEL subunit).

# Closed state of the subunit
pdb.closed <- trim.pdb(pdb.full, atom.select(pdb.full, chain="H"))

# Align closed and open PDBs
aln <- struct.aln(pdb.open, pdb.closed, max.cycles=0)
pdb.closed$xyz <- aln$xyz

# Caclulate a difference wvector
xyz <- rbind(pdb.open$xyz[aln$a.inds$xyz], pdb.closed$xyz[aln$a.inds$xyz])

10



diff <- difference.vector(xyz)

# Calculate overlap
oa <- overlap(modes, diff)

plot(oa$overlap, type=’h’, xlab="Mode index", ylab="Squared overlap", ylim=c(0,1))
points(oa$overlap, col=1)

lines(oa$overlap.cum, type=’b’, col=2, cex=0.5)

text(c(1,5)+.5, oa$overlap[c(1,5)], c("Mode 1", "Mode 5"), adj=0)

o |
—
0 o o o o © o o O
a T o o o 0O o o o o
g © /
CT) © ’ooo
3 o | 9Model
o
o« |
T o
>
O
wn N
o
Mode 5
g— ol 0000000000000 0
[ [ [ [
5 10 15 20
Mode index

Figure 7: Overlap analysis between the modes of the open subunit and the conformational difference
vector between the closed-open state.

1.3.6 Domain analysis with GeoStaS

Identification of regions in the protein that move as rigid bodies is facilitated with the implementation
of the GeoStaS algorithm (Romanowska, Nowinski, and Trylska 2012). Below we demonstrate the use
of function geostas() on an nma object, and an ensemble of X-ray structures. See help(geostas)
for more details and further examples.

GeoStaS with NMA: Starting from the calculated normal modes, we generate conformers by
interpolating along the eigenvectors of the first 5 normal modes of the GroEL subunit. We then use
this ensemble as input to function geostas():

# Build conformational ensemble

trj <- rbind(mktrj(modes, mode=7)[10:24,],
mktrj(modes, mode=8)[10:24,],
mktrj(modes, mode=9) [10:24,],
mktrj(modes, mode=10) [10:24,],

11



mktrj(modes, mode=11) [10:24,])

# Run geostas to find domains
gs <- geostas(trj, k=4)

# Write NMA trajectory with domain assignment
mktrj(modes, mode=7, chain=gs$grps)

GeoStaS with X-ray structure ensemble: Alternatively the same analysis can be performed
on an ensemble of X-ray structures obtained from the PDB:

# Define the ensemble PDB-ids
ids <- c("1sx4_[A,B,H,I]", "1xck_[A-B]", "1sx3_[A-B]", "4ab3_[A-B]")

# Download and split PDBs by chain ID
raw.files <- get.pdb(ids, "groel pdbs", gzip=TRUE)
files <- pdbsplit(raw.files, ids, path = "groel pdbs")

# Align and superimpose coordinates
pdbs <- pdbaln(files, fit=TRUE)

# Run geostast to find domains
gs <- geostas(pdbs, k=4)

# Plot a atomic movement similarity matric
plot.dccm(gs$amsm, at=seq(0, 1, 0.1), main="AMSM with Domain Assignment",
col.regions=rev(heat.colors(200)), margin.segments=gs$grps, contour=FALSE)

# Principal component analysts

gaps.pos <- gap.inspect (pdbs$xyz)

xyz <- fit.xyz(pdbs$xyz[1l, gaps.pos$f.inds],
pdbs$xyz[, gaps.pos$f.inds],
fixed.inds=gs$fit.inds,
mobile.inds=gs$fit.inds)

pc.xray <- pca.xyz(xyz)

# Visualize PCs with colored domains (chain ID)
mktrj(pc.xray, pc=1, chain=gs$grps)
2 Example 2: Ensemble normal mode analysis

The analysis of multiple protein structures (e.g. a protein family) can be accomplished with the
nma.pdbs() function.® This will take aligned input structures, as generated by the pdbaln()

3See also dedicated vignettes for ensemble NMA provided with the Bio3D package.

12



AMSM with Domain Assignment

500
400
o
Z 300
()
>
S
3
x 200
100 - 0.2
0.0

100 200 300 400 500
Residue No.

Figure 8: Atomic movement similarity matrix with domain annotation.

13



Figure 9: Visualization of domain assignment obtained from function geostas() using (left) an
ensemble of X-ray structures and (right) NMA.

14



function for example, and perform NMA on each structure collecting the results in manner that
facilitates the interpretation of similarity and dissimilarity trends in the structure set. Here we
will analyze a collection of Dihydrofolate reductase (DHFR) structures with low sequence identity
(Example 2A) and large set of closely related transducin heterotrimeric G protein family members
(Example 2B).

2.1 Example 2A: Dihydrofolate reductase

In the following code we collect 9 bacterial DHFR structures of 4 different species from the
protein databank (using get.pdb()) with sequence identity down to 27% (see the call to function
seqidentity() below), and align these with pdbaln():

# Select bacterial DHFR PDB IDs

ids <- c("1rx2_A", "1rx4_ A", "1rg7_ A",
"3jw3_A", "3sai_A",
"1df7_A", "4kne A",
"3fyv_X", "3sgy_B")

# Download and split by chain ID
raw.files <- get.pdb(ids, path="raw_pdbs")
files <- pdbsplit( raw.files, ids )

# Alignment of structures
pdbs <- pdbaln(files)

# Sequence identity
summary( c(seqidentity(pdbs)) )

## Min. 1st Qu. Median Mean 3rd Qu. Max.
#i# 0.268 0.346 0.396 0.527 0.994 1.000

The pdbs object now contains aligned C-alpha atom data, including Cartesian coordinates, residue
numbers, residue types, and B-factors. The sequence alignment is also stored by default to the
FASTA format file ‘aln.fa’ (to view this you can use an alignment viewer such as SEAVIEW, see
Requirements section above). Function nma.pdbs() will calculate the normal modes of each protein
structures stored in the pdbs object. The normal modes are calculated on the full structures as
provided by object pdbs. With the default argument rm.gaps=TRUE unaligned atoms are omitted
from output in accordance with common practice (Fuglebakk, Echave, and Reuter 2012).

# NMA on all structures
modes <- nma(pdbs)

The modes object of class enma contains aligned normal mode data including fluctuations, RMSIP
data, and aligned eigenvectors. A short summary of the modes object can be obtain by calling the
function print(), and the aligned fluctuations can be plotted with function plot():

15



print (modes)

##

## Call:

## nma.pdbs(pdbs = pdbs)

##

## Class:

##  enma

##

## Number of structures:

# 9

##

## Attributes stored:

## - Root mean square inner product (RMSIP)

## - Aligned atomic fluctuations

## - Aligned eigenvectors (gaps removed)

## - Dimensions of x3U.subspace: 456x450x9

##

## Coordinates were aligned prior to NMA calculations
##

## + attr: fluctuations, rmsip, U.subspace, L, full.nma, xyz,
## call

# Plot fluctuation data
col <- c(1,1,1, 2,2, 3,3, 4,4)
plot(modes, pdbs=pdbs, col=col)
legend("topleft", col=unique(col), lty=1,
legend=c("E.Coli", "B.Anthracis", "M.Tubercolosis", "S.Aureus"))

# Alternatively, one can use ’rm.gaps=FALSE’ to keep the gap containing columns
modes <- nma.pdbs(pdbs, rm.gaps=FALSE)

Cross-correlation analysis can be easily performed and the results contrasted for each member of
the input ensemble. Below we calculate and plot the correlation matrices for each structure and
then output correlations present only in all input structures.

# Calculate correlation matrices for each structure
cij <- dccm(modes)

# Determine correlations present only in all 9 input structures
cij.all <- filter.dccm(cij$all.dccm, cutoff.sims=9, cutoff.cij = 0)
plot.dccm(cij.all, main="Consensus Residue Cross Correlation")

16



| | || || || || |
S
—| +— E.Coli
—— B.Anthracis
| T~ M.Tubercolosis
o| +— S.Aureus
[%2]
c
i) ©
8 oS
>
3]
=}
T <
g
N
o
o
S -
T T
0 50 100 150

Alignment Position

Figure 10: Results of ensemble NMA on four distinct bacterial species of the DHFR enzyme.

2.2 Example 2B: Transducin

In this section we will demonstrate the use of nma.pdbs() on the example transducin family data
that ships with the Bio3D package. This can be loaded with the command data(transducin) and
contains an object pdbs consisting of aligned C-alpha coordinates for 53 transducin structures from
the PDB as well their annotation (in the object annotation) as obtained from the pdb.annotate()
function. Note that this data can be generated from scratch by following the Comparative Structure
Analysis with Bio3D Vignette available both on-line and from within the Bio3D package.

# Load data

data(transducin)

pdbs <- transducin$pdbs

annotation <- transducin$annotation

# Find gap positions
gaps.res <- gap.inspect(pdbs$ali)
gaps.pos <- gap.inspect (pdbs$xyz)

# Calculate normal modes of the 53 structures
modes <- nma.pdbs(pdbs, ncore=4)

# Make fluctuation plot

plot(modes, col=annotation[, "color"], pdbs=pdbs)

legend("left", lty=c(1l, 1), lwd=c(2, 2),
col=c("red", "green"), legend=c("GTP", "GDP"))

The similarity of structural dynamics is calculated by RMSIP based on the 10 lowest frequency
normal modes. The rmsip values are pre-calculated in the modes object and can be accessed through

17



Fluctuations

0 50 100 150 200 250 300

Alignment Position

Figure 11: Structural dynamics of transducin. The calculation is based on NMA of 53 structures:
28 GTP-bound (red), and 25 GDP-bound (green).

the attribute modes$rmsip. As a comparison, we also calculate the root mean square deviation
(RMSD) of all pair-wise structures:

# Plot a heat map with clustering dendogram
ids <- substr(basename(pdbs$id), 1, 6)
heatmap((1-modes$rmsip), labRow=annotation[, "state"], labCol=ids, symm=TRUE)

# Calculate patr-wise RMSD walues
rmsd.map <- rmsd(pdbs$xyz, a.inds=gaps.pos$f.inds, fit=TRUE)
heatmap(rmsd.map, labRow=annotation[, "state"], labCol=ids, symm=TRUE)

3 Example 3: Variance weighted normal mode analysis

In this example we illustrate an approach of weighting the pair force constants based on the variance
of the inter atomic distances obtained from an ensemble of structures (e.g. available X-ray structures).
The motivation for such variance-weighting is to reduce the well known dependence of the force
constants on the one structure upon which they are derived (Tama and Sanejouand 2001).

3.1 Example 3A: GroEL

We first calculate the normal modes of both the closed and open state of the GroEL subunit, and we
illustrate the difference in the agreement towards the observed conformational changes (characterized

18



HJ?D@(<(<<(<(<( <<<m<<lrmﬁﬁml)ﬂl)ml)(< KEEEEREERC
NN RNRAA DR AN NN IJ‘IIIIIIIIIIIIIII<I(I

g R

Figure 12: RMSIP matrix of the transducin family.

19



ﬁgmmﬁl%?m%

TR

PRSI e,
= J‘:’i’-‘]‘l; ‘.I%‘)’:
—“’-*‘E“ﬁ-- e

Figure 13: RMSD matrix of the transducin family.

20



by X-ray and EM studies). We will then use an ensemble of X-ray/EM structures as weights to the
pair-force constants.

# Define the ensemble PDB-ids
ids <- c("1sx4_[A,B,H,I]", "1xck_[A-B]", "1sx3_[A-B]", "4ab3_[A-B]")

# Download and split PDBs by chain ID
raw.files <- get.pdb(ids, "groel pdbs", gzip=TRUE)
files <- pdbsplit(raw.files, ids, path = "groel pdbs")

# Align and superimpose coordinates
pdbs <- pdbaln(files, fit=TRUE)

3.1.1 Calculate normal modes

Next we will calculate the normal modes of the open and closed conformational state. They are
stored at indices 1 and 5, respectively, in our pdbs object. Use the pdbs2pdb() to fetch the pdb
objects which is needed for the input to nma().

# Inspect gaps
gaps.res <- gap.inspect(pdbs$ali)
gaps.pos <- gap.inspect (pdbs$xyz)

# Access PDB objects
pdb.list <- pdbs2pdb(pdbs, inds=c(1,5,9), rm.gaps=TRUE)

Note that we are here using the argument rm. gaps=TRUE to omit residues in gap containing columns
of the alignment. Consequently, the resulting three pdb objects we obtain will have the same lengths
(523 residues), which is convenient for subsequent analysis.

pdb.open  <- pdb.list[["1sx4_A"]]
pdb.closed <- pdb.list[["1xck_ A"]]
pdb.rstate <- pdb.list[["4ab3_A"]1]

# Calaculate normal modes
modes.open  <- nma(pdb.open)
modes.closed <- nma(pdb.closed)
modes.rstate <- nma(pdb.rstate)

3.1.2 Overlap analysis

Use overlap analysis to determine the agreement between the normal mode vectors and the confor-
mational difference vector:

21



# Difference vector 1: closed — open

diff.vec.1 <- difference.vector(pdbs$xyz[c(1,5), gaps.pos$f.inds])
# Difference wector 2: closed — rstate

diff.vec.2 <- difference.vector(pdbs$xyz[c(5,9), gaps.pos$f.inds])

# Calculate overlap

oa <- overlap(modes.open, diff.vec.1)
ob <- overlap(modes.closed, diff.vec.1)
oc <- overlap(modes.closed, diff.vec.2)

plot(oa$overlap.cum[1:10], type=’b’, ylim=c(0,1),
ylab="Squared overlap", xlab="Mode index", 1lwd=2)

lines(ob$overlap.cum[1:10], type=’b’, 1lty=2, col=2, lwd=2)

lines(oc$overlap.cum[1:10], type=’b’, lty=3, col=4, lwd=1)

legend ("bottomright",
c("Open to closed", "Closed to open", "Closed to r-state"),
col=c(1,2,4), 1lty=c(1,2,3))

o _|
—i
w ] O .......... g .......... @ .......... @ ...... o o o
° ) / -0---0
g 0——0——0 _.0---0---07
T 9 o— -0---0"
S o ) o- -~
o /
3 /
s X /
> o . /
3 /
© /
N !
© / —— Open to closed
o- - _0’ ---- Closed to open
o _| T e Closed to r-state
o
| | | | |
2 4 6 8 10

Mode index

Figure 14: Overlap anlaysis with function overlap(). The modes calculated on the open state of
the GroEL subunit shows a high similarity to the conformational difference vector (black), while
the agreement is lower when the normal modes are calculated on the closed state (red). Blue line
correspond to the overlap between the closed state and the r-state (a semi-open state characterized
by a rotation of the apical domain in the opposite direction as compared to the open state.

22



3.1.3 Variance weighting

From the overlap analysis above we see the good agreement (high overlap value) between the
conformational difference vector and the normal modes calculated on the open structures. Contrary,
the lowest frequency modes of the closed structures does not show the same behavior. We will thus
proceed with the weighting of the force constants. First we’ll define a quick function for calculating
the weights which takes a matrix of Cartesian coordinates as input:

"make.weights" <- function(xyz) {
# Calculate pairwise distances
natoms <- ncol(xyz) / 3
all <- array(0, dim=c(natoms,natoms,nrow(xyz)))
for( i in 1:nrow(xyz) ) {
dists <- dist.xyz(xyzl[i,])
all[,,i] <- dists
}

# Calculate variance of patrwise distances
all.vars <- apply(all, 1:2, var)

# Make the final weights
weights <- 1 - (all.vars / max(all.vars))
return(weights)

# Calcualte the weights
wts <- make.weights(pdbs$xyz[, gaps.pos$f.inds])

Weights to the force constants can be included by the argument ‘fc.weights’ to function nma().
This needs be a matrix with dimensions NxN (where N is the number of C-alpha atoms). Here we
will run a small for-loop with increasing the strength of the weighting at each step and store the
new overlap values in the variable ‘ob.wtd’:

ob.wtd <- NULL

for (i in 1:10 ) {
modes.wtd <- nma(pdb.closed, fc.weights=wts**i)
ob.tmp <- overlap(modes.wtd, diff.vec.1)
ob.wtd <- rbind(ob.wtd, ob.tmp$overlap.cum)

plot(oa$overlap.cum[1:10], type=’b’, ylim=c(0,1),
ylab="Squared overlap", xlab="Mode index", axes=T, lwd=2)
lines(ob$overlap.cum[1:10], type=’b’, lty=2, col=1, lwd=2)

cols <- rainbow(10)

for ( i in 1l:nrow(ob.wtd) ) {
lines(ob.wtd[i,1:10], type=’b’, lty=1, col=cols[i])

23



legend ("bottomright",
c("Open state", "Closed state", "Closed state (weighted)"),
col=c("black", "black", "green"), lty=c(1,2,1))

o
S -
@ _ o 0 p—
S g=—=0="= §=—8
o 0---0---0"
= ©
2 o7
(@)
©
(8]
s X |
> o
O
n
N
© —— Open state
---- Closed state
o | Closed state (weighted)
© | | | | |
2 4 6 8 10
Mode index

Figure 15: Overlap plot with increasing strength on the weighting. The final weighted normal modes
of the closed subunit shows as high overlap values as the modes for the open state.
3.1.4 RMSIP calculation

RMSIP can be used to compare the mode subspaces:

ra <- rmsip(modes.open, modes.wtd)
rb <- rmsip(modes.open, modes.closed)

par (mfrow=c(1,2))

plot(ra, ylab="NMA(open)", xlab="NMA(weighted)")
plot(rb, ylab="NMA(open)", xlab="NMA(closed)")

3.1.5 Match with PCA

Finally, we compare the calculated normal modes with principal components obtained from the
ensemble of X-ray structures using function pca.xyz():

24



RMSIP: 0.8 RMSIP: 0.78

10
10

NMA(open)
NMA(open)

NMA(weighted) NMA(closed)

Figure 16: RMSIP maps between (un)weighted normal modes obtained from the open and closed
subunits.

# Calculate the PCs
pc.xray <- pca.xyz(pdbs$xyz[,gaps.pos$f.inds])

# or alternatively...
pc.xray <- pca(pdbs)

# Calculate RMSIP walues
rmsip(pc.xray, modes.open)$rmsip

## [1] 0.6226

rmsip(pc.xray, modes.closed)$rmsip

## [1] 0.632

rmsip(pc.xray, modes.rstate)$rmsip

## [1] 0.589

rmsip(pc.xray, modes.wtd)$rmsip

## [1] 0.6617

25



3.2 Example 3B: Transducin

This example will run nma() on transducin with variance weighted force constants. The modes
predicted by NMA will be compared with principal component analysis (PCA) results over the
transducin family. We load the transducin data via the command data(transducin) and calculate
the normal modes for two structures corresponding to two nucleotide states, respectively: GDP
(PDB id 1TAG) and GTP (PDB id 1TND). Again we use function pdbs2pdb() to build the pdb
objects from the pdbs object (containing aligned structure/sequence information). The coordinates
of the data set were fitted to all non-gap containing C-alpha positions.

data(transducin)
pdbs <- transducin$pdbs

gaps.res <- gap.inspect(pdbs$ali)
gaps.pos <- gap.inspect (pdbs$xyz)

# Fit coordinates based on all non-gap positions
# and do PCA

xyz <- pdbfit(pdbs)

pc.xray <- pca.xyz(xyz[, gaps.pos$f.inds])

# Fetch PDB objects

npdbs <- pdbs

npdbs$xyz <- xyz

pdb.list <- pdbs2pdb(npdbs, inds=c(2, 7), rm.gaps=TRUE)
pdb.gdp <- pdb.list[[ grep("1TAG_A", names(pdb.list)) 1]]
pdb.gtp <- pdb.list[[ grep("1TND_B", names(pdb.list)) 1]

# Calculate normal modes
modes.gdp <- nma(pdb.gdp)
modes.gtp <- nma(pdb.gtp)

Now, we calculate the pairwise distance variance based on the structural ensemble with the function
make.weights() defined above. This will be used to weight the force constants in the elastic
network model.

# Calculate wetights
weights <- make.weights(xyz[, gaps.pos$f.inds])

# Calculate normal modes with weighted pair force constants

modes.gdp.b <- nma(pdb.gdp, fc.weights=weights**100)
modes.gtp.b <- nma(pdb.gtp, fc.weights=weights**100)

To evaluate the results, we calculate the overlap (square dot product) between modes predicted by
variance weighted or non-weighted NMA and the first principal component from PCA.

26



oa <- overlap(modes.gdp, pc.xray$ul[,1])
ob <- overlap(modes.gtp, pc.xray$ul[,1])
oc <- overlap(modes.gdp.b, pc.xray$u[,1])
od <- overlap(modes.gtp.b, pc.xray$U[,1])

plot (oa$overlap.cum, type=’o’, ylim=c(0,1), col="darkgreen", lwd=2, xlab="Mode",
ylab="Cummulative overlap")

lines(ob$overlap.cum, type=’o’, ylim=c(0,1), col="red", lwd=2)

lines(oc$overlap.cum, type=’b’, ylim=c(0,1), col="darkgreen", lwd=2, lty=2)

lines(od$overlap.cum, type=’b’, ylim=c(0,1), col="red", lwd=2, 1lty=2)

text (20, oa$overlap.cum[20], label=round(oa$overlap.cum[20], 2), pos=3)

text (20, ob$overlap.cum[20], label=round(ob$overlap.cum[20], 2), pos=3)

text (20, oc$overlap.cum[20], label=round(oc$overlap.cum[20], 2), pos=3)

text (20, od$overlap.cum[20], label=round(od$overlap.cum[20], 2), pos=3)

legend("topleft", pch=1, lty=c(l, 1, 2, 2), col=c("darkgreen", "red",

"darkgreen", "red"), legend=c("GDP", "GTP", "Weighted GDP", "Weighted GTP"))

e
— |—e— GDP
—— GTP 0.82
© _|-©- Weighted GDP 0-0-0-0 o‘b
© |-o- Weighted GTP _0-0-0-0-0-0-07
g ig o 0-0-0-0-0 0.71
o
3 9
o o
=
=
> <
E o |
S
]
© AN
N
o
S
! ! ! !
5 10 15 20
Mode

Figure 17: Variance weighted force constants improve NMA prediction

4 Example 4: User-defined pair force constant functions

In this example we demonstrate the interface for defining custom functions for the pair spring force
constants. A custom function can be obtained through simple scripting as shown below.

27



4.1 Example 4A: Specifying a simple function

We first show how to define a simple force constant function by building a revised version of the
parameter-free ANM force field. The function my.ff() below takes as input r which is a vector of
inter-atomic (calpha) distances (i.e. distances from atom i, to all other atoms in the system; this
function will thus be called N times, where N is the number of calpha atoms). It will in this case
return 0 for the pairs with a distance larger than 10 A, and r—2 for all other pairs. Our simple
function will thus look like:

# Define function for spring force constants
"my.ff" <- function(r, ...) {

ifelse( r>10, 0, r~(-2) )
b

Once the function is in place we can feed it to function nma() to calculate the normal modes based
on the particular force constants built with our new function. Below we apply it to the lysozyme
structure (PDB id 1hel) from Example 1:

# Download PDB and calculate normal modes
pdb <- read.pdb("1lhel")
modes <- nma(pdb, pfc.fun=my.ff)

Alternatively we can take a more manual approach by calling build.hessian() if we want to
investigate the Hessian matrix further (note that build.hessian is called from within function
nma() which will diagonalize the hessian to obtain the normal modes and thus not return it to the
user). In the code below we first build the hessian and illustrate how to obtain the normal modes
through calls to either eigen() or nma() (which can also take a Hessian matrix as input):

# Indices for CA atoms
ca.inds <- atom.select(pdb, ’calpha’)

# Build hessian matriz
h <- build.hessian(pdb$xyz[ ca.inds$xyz ], pfc.fun=my.ff)

# Diagonalize and obtain eigenvectors and eigenvalues
modes <- eigen(h, symmetric=TRUE)

# ... or feed the Hessian to function ’nma()’
modes <- nma(pdb, hessian=h, mass=FALSE)

Note that function nma() assumes the Hessian to be mass-weighted and we therefore have to
specify mass=FALSE in this particular case. To obtain a mass-weighted Hessian pass the amino
acid masses through argument aa.mass to function build.hessian().

4.2 Example 4B: Specific force constants for disulfide bridges

In the following code we illustrate a more advanced force constant function making use of ar-
guments atom.id and ssdat which is passed from function build.hessian() by default. This

28



allows users to access the protein sequence (ssdat$seq), secondary structure data (ssdat$sse),
beta bridges (ssdat$beta.bridges), helix 1-4 (ssdat$helix14), and disulfide bridges (ss bonds;
ssdat$ss.bonds) when building the force constants.

First we define our new function (ff.custom()) and specify the force constants which should be
applied to bonded and non-bonded interactions (k.bonded and k.nonbonded, respectively). Next
we define the the force constant for the disulfide bridges (k.ssbond):

"ff.custom" <- function(r, atom.id, ssdat=NULL, ...) {
# Default force constants (Hinsen et al 2000)
k.bonded <- (r * 8.6 * 1072) - (2.39 * 1073)
k.nonbonded <- (128 * 1074) * r~(-6)

# Spectial force constant for SS-bonds
k.ssbond <- 143;

# Calculate default values (equivalent to the calpha ff)
ks <- ifelse(r<4.0,

k.bonded,

k.nonbonded)

if('is.null(ssdat$ss.bonds)) {
# If atom.id is part off a ssbond..
inds <- ssdat$ss.bonds[,1]==atom.id

if (any(inds)) {
# Find ss-bond pair
inds.paired <- ssdat$ss.bonds[which(inds), 2]

# and change the spring force constant
ks[inds.paired] <- k.ssbond
X
b
return(ks)

}

The disulfide bridges can be supplied as input to nma() function via a simple two-column matrix:
# Define SS-bonds in a two-column matriz
ss.bonds <- matrix(c(76,94, 64,80, 30,115, 6,127),

ncol=2, byrow=TRUE)

# Calculate modes with custom force field
modes <- nma(pdb, pfc.fun=ff.custom, ss.bonds=ss.bonds)

Note that we can also use force field calphax to account for stronger interactions for beta bridges
and helix 1-4 interactions:

29



# Use ff=’calphaz’ to account for stronger beta-bridges and helixz 1-4 interactions
sse <- dssp(pdb, resno=FALSE, full=TRUE)
modes <- nma(pdb, ff=’calphax’, ss.bonds=ss.bonds, sse=sse)

Document Details

This document is shipped with the Bio3D package in both R and PDF formats. All code can
be extracted and automatically executed to generate Figures and/or the PDF with the following
commands:

library(rmarkdown)
render ("Bio3D _nma.Rmd", "all")

Information About the Current Bio3D Session

sessionInfo()

## R version 3.1.1 (2014-07-10)
## Platform: x86_64-redhat-linux-gnu (64-bit)

##

## locale:

## [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C

## [3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8

## [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8

## [7] LC_PAPER=en_US.UTF-8 LC_NAME=C

## [9] LC_ADDRESS=C LC_TELEPHONE=C

## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C

##

## attached base packages:

## [1] parallel grid stats graphics grDevices utils datasets
## [8] methods  base

##

## other attached packages:

## [1] lattice_0.20-29 bio3d_2.1-0 rmarkdown _0.3.3

##

## loaded via a namespace (and not attached):

## [1] digest_0.6.3 evaluate_0.5.5 formatR_1.0 htmltools_0.2.6
## [5] knitr_1.6 stringr_0.6.2 tools_3.1.1 yaml_2.1.13
References

Fuglebakk, Edvin, Julidn Echave, and Nathalie Reuter. 2012. “Measuring and comparing structural
fluctuation patterns in large protein datasets.” Bioinformatics (Ozford, England) 28 (19): 2431-40.

30



doi:10.1093 /bioinformatics/bts445.

Grant, B.J., A.P.D.C Rodrigues, K.M. Elsawy, A.J. Mccammon, and L.S.D. Caves. 2006. “Bio3d:
An R Package for the Comparative Analysis of Protein Structures.” Bioinformatics 22: 2695-96.
doi:10.1093 /bioinformatics/bt1461.

Hinsen, K, A J Petrescu, S Dellerue, M C Bellissent-Funel, and G R Kneller. 2000. “Harmonicity in
slow protein dynamics.” Chemical Physics 261 (1-2): 25-37. doi:10.1016/S0301-0104(00)00222-6.

Romanowska, Julia, Krzysztof S. Nowinski, and Joanna Trylska. 2012. “Determining geometrically
stable domains in molecular conformation sets.” Journal of Chemical Theory and Computation 8
(8): 2588-99. doi:10.1021/ct300206.

Tama, F, and Y H Sanejouand. 2001. “Conformational change of proteins arising from normal
mode calculations.” Protein Eng 14 (1): 1-6. doi:10.1093/protein/14.1.1.

31


http://dx.doi.org/10.1093/bioinformatics/bts445
http://dx.doi.org/10.1093/bioinformatics/btl461
http://dx.doi.org/10.1016/S0301-0104(00)00222-6
http://dx.doi.org/10.1021/ct300206j
http://dx.doi.org/10.1093/protein/14.1.1

	Background
	Requirements
	About this document

	Example 1: Basic Normal Mode Analysis
	Example 1A: Normal mode calculation
	Example 1B: Specifying a force field
	Example 1C: Normal mode analysis of the GroEL subunit

	Example 2: Ensemble normal mode analysis
	Example 2A: Dihydrofolate reductase
	Example 2B: Transducin

	Example 3: Variance weighted normal mode analysis
	Example 3A: GroEL
	Example 3B: Transducin

	Example 4: User-defined pair force constant functions
	Example 4A: Specifying a simple function
	Example 4B: Specific force constants for disulfide bridges

	Document Details
	Information About the Current Bio3D Session
	References

